

MULTIMODAL LOCALLY ENHANCED TRANSFORMER FOR CONTINUOUS SIGN LANGUAGE RECOGNITION

Gerasimos Potamianos Katerina Papadimitriou

Department of Electrical and Computer Engineering, University of Thessaly, Volos 38221, Greece

OVERVIEW

- **Goal:** Continuous sign language recognition from **RGB videos**.
- **Challenges:**
 - Multitude, complexity, and strong correlation of SL articulators.
 - -Absence of gloss-level segmentation.

EXPERIMENTAL RESULTS

INTERSPE

- System evaluation on the RWTH-PHOENIX Weather 2014 dataset, against some variations of it, in word error rate (WER, %).

	Modalities	RNN	RP	GB	WER (%)
Γ					27.55
		\checkmark			23.25
	RGB		\checkmark	\checkmark	24.05
		\checkmark	\checkmark	\checkmark	21.25
					29.18
		\checkmark			26.20
	Optical Flow		\checkmark	\checkmark	25.87
		\checkmark	\checkmark	\checkmark	25.07
	Both	\checkmark	\checkmark	\checkmark	20.89

- Previous work [1]:
 - -Multiple modalities: signer's pose, shape, **appearance**, and **motion** information.
 - -Graph convolutional networks with BiLSTMs.
- Paper contributions:
 - -A multimodal framework: appearance and motion signing streams.
 - A window-based RNN module [2] ⇒ local temporal context.
 - A Transformer encoder ⇒ both local and global structure modeling.
 - -Visual feature and gloss sequence alignment.
- <u>Results:</u>
 - -Achieves competitive performance on two large-scale German CSLR datasets.

PROPOSED CSLR SYSTEM

- Window-based RNN module:
- Rearrange the initial frame feature sequence into many short ones.
- Use a local window of fixed size M for each target frame \Rightarrow local sequences.
- Local sequences pass through the RNN
- unit is hidden state representations.
- RNN module relies on **BiLSTM** networks.

CSL RECOGNIZER

- **Transformer encoder:**
 - Global long-term dependencies ⇒ multihead attention layer followed by a feedforward one.
 - Local context dependencies:
 - ⇒ Relative representations enhancing neighboring relations.

- -Superior performance when all modalities are considered.
- RNN module and relative position (RP) encoding \Rightarrow **most robust** components.
- -Gaussian bias (GB) incorporation benefits system **performance**.

Proposed Model	WER (%)
w/o \mathcal{L}_V	21.75
w/o \mathcal{L}_G	24.16
$\le \mathcal{L}_V \ \& \ \mathcal{L}_G$	20.89

- -Comparison of our proposed model to the literature on the RWTH-PHOENIX Weather **2014 dataset** (left) and the **RWTH-PHOENIX** Weather 2014T dataset (right).
- -Outperforms most results in the literature,

coming very close to the state-of-the-art.

Model	WER (%)	Model	WER (%)
SubUnet [35]	40.70	Re-Sign [8]	26.60
SLT [36]	24.59	SFD+SGS+SFL [14]	26.10
CNN-LSTM-HMM [37]	24.10	Bi-ST-LSTM-A [16]	24.68
VAC [4]	22.30	SLT [36]	24.59
SMKD [5]	21.00	CrossModal [24]	24.30
STMC [18]	20.70	CNN-LSTM-HMM [37]	24.10
C2SLR [6]	20.40	TDCNN [15]	23.70
STTN [20]	19.98	SMKD [5]	22.40
Proposed	20.89	ST-GCN [25]	21.34
Toposed	20.07	STMC [18]	21.00
		C2SLR [6]	20.40
		Proposed	20.73

- Visual module:
 - **Two** different streams \Rightarrow RGB appearance frames and optical flows.
 - A 2D-CNN based spatial feature learner.
 - A window-based RNN module for local context visual features extraction.
- **Sequence learning model:**
 - **Transformer** encoder:
 - Relative position encoding [3] and Gaussian bias [4].
 - ➡ Multi-head attention.
- Alignment module:
 - -Conjunction of CTC and knowledge

- ⇒ Gaussian distribution with a fixed window size as additive bias.
- **Alignment module:**
 - Combines the CTC loss with a knowledge distillation loss.
 - Minimizes the distance between the probability distributions of the sequence learning model and the visual module.
- **Ensemble module:**
 - Add RGB and optical flow streams decoding scores through a **posterior fusion scheme**.
 - Spike timings synchronization via a guiding CTC model.

CONCLUSIONS

- **Proposed** a deep learning model for **CSLR** from RGB videos.
- Investigated the contribution of:
 - A window-based RNN module to capture local temporal context.
 - A Transformer encoder with local context modeling and **global** structure learning.
 - The design of a multi-modal framework.
 - The **conjunction** of the **CTC** loss with a **visual** alignment loss.
- Achieved **competitive performance** on two popular German CSLR datasets.

distillation loss functions [5].

- Ensemble module:
- Streams alignment through a CTC guiding technique [1] and score fusion.

VISUAL MODULE

- **Appearance and optical flow features:**
 - Full-frame RGB stream.
 - Motion informative image generation via SpyNet [6].
 - -Visual representations based on the VGG11 network [7].

- 512-dimensional features.

DATASETS & EXPERIMENTAL SETUP

- **RWTH-PHOENIX Weather 2014 dataset [8]:**
 - -6,841 sentences \Rightarrow 1,232-gloss vocabulary.
 - Multi-signer split \Rightarrow 5,672 training videos, 540 validation, and 629 testing.

RWTH-PHOENIX Weather 2014T dataset [9]:

- -8,257 sequences \Rightarrow 1,066-gloss vocabulary.
- Multi-signer setting \Rightarrow 7,096 training videos,

519 validation, and 642 testing.

REFERENCES

[1] Parelli et al., "Spatio-temporal graph convolutional networks for continuous sign language recognition," Proc. ICASSP, 2022. [2] **Zheng et al.**, "Improving end-to-end speech synthesis with local recurrent neural network enhanced transformer ," Proc. ICASSP, 2022. [3] Shaw et al., "Self-attention with relative position representations," Proc. NAACL-HLT, 2018. [4] Yang et al., "Modeling localness for self-attention networks," ArXiv, 2018. [5] Hinton et al., "Distilling the knowledge in a neural network," *ArXiv*, 2015. [6] Ranjan & Black., "Optical flow estimation using a spatial pyramid network," *Proc. CVPR*, 2017. [7] Simonyan and Zisserman, "Very deep convolutional networks for large-scale image recognition," Proc. ICLR, 2015. [8] Koller et al., "Continuous sign language recognition: Towards large vocabulary statistical recognition systems handling multiple signers," Computer Vision and Image Understanding, 2015. [9] Camgöz et al., "Sign language transformers: Joint end-to-end sign language recognition and translation," Proc. ICCV, 2019.

[*] See paper for the table citations.

ACKNOWLEDGMENTS

The **research work** was supported by the **Hellenic** Foundation for Research and Innovation (H.F.R.I.)

under the "First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant" (HFRI-FM17-2456).