
EXPERIMENTAL RESULTS 
– System evaluation on the RWTH-PHOENIX 

Weather 2014 dataset, against some 
variations of it, in word error rate (WER, %). 
 
 
 
 
 
 

– Superior performance when all modalities 
are considered. 

– RNN module and relative position (RP) 
encoding       most robust components. 

– Gaussian bias (GB) incorporation benefits 
system performance. 
 
 

– Comparison of our proposed model to the 
literature on the RWTH-PHOENIX Weather 
2014 dataset (left) and the RWTH-PHOENIX 
Weather 2014T dataset (right). 

– Outperforms most results in the literature, 
coming very close to the state-of-the-art. 

 

 

 

 

OVERVIEW 
 Goal: Continuous sign language recognition 

from RGB videos. 

 Challenges: 
– Multitude, complexity, and strong correlation 

of SL articulators.  
– Absence of gloss-level segmentation. 

 Previous work [1]: 
– Multiple modalities: signer’s pose, shape, 

appearance, and motion information. 
– Graph convolutional networks with BiLSTMs. 

 Paper contributions: 
– A multimodal framework: appearance and 

motion signing streams. 
– A window-based RNN module [2]       local 

temporal context. 
– A Transformer encoder       both local and 

global structure modeling. 
– Visual feature and gloss sequence 

alignment. 
 Results: 

– Achieves competitive performance on two 
large-scale German CSLR datasets. 

 
 

 

CONCLUSIONS 
 Proposed a deep learning model for CSLR from 

RGB videos. 

 Investigated the contribution of:  

– A window-based RNN module to capture local 
temporal context.  

– A Transformer encoder with local context 
modeling and global structure learning. 

– The design of a multi-modal framework. 
– The conjunction of the CTC loss with a visual 

alignment loss. 
 Achieved competitive performance on two 

popular German CSLR datasets. 
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PROPOSED CSLR SYSTEM 
 
 
 
 
 
 
 
 

 Visual module: 
– Two different streams       RGB appearance 

frames and optical flows. 
– A 2D-CNN based spatial feature learner. 
– A window-based RNN module for local context 

visual features extraction. 
 Sequence learning model: 

– Transformer encoder: 
Relative position encoding [3] and    
Gaussian bias [4]. 
Multi-head attention. 

 Alignment module: 
– Conjunction of CTC and knowledge 

distillation loss functions [5]. 
 Ensemble module: 

– Streams alignment through a CTC guiding 
technique [1] and score fusion. 

 
 

 

 

 

 
 

 
 
 
 
 
 
 
 

 Window-based RNN module: 
– Rearrange the initial frame feature sequence 

into many short ones.  
– Use a local window of fixed size M for each 

target frame       local sequences. 
– Local sequences pass through the RNN  
   unit       hidden state representations. 
– RNN module relies on BiLSTM networks. 

 
 

 

 

MULTIMODAL LOCALLY ENHANCED TRANSFORMER  
FOR CONTINUOUS SIGN LANGUAGE RECOGNITION 

CSL RECOGNIZER 
 Transformer encoder:  

– Global long-term dependencies       multi-
head attention layer followed by a feed-
forward one. 

– Local context dependencies: 
Relative representations enhancing          
neighboring relations. 
Gaussian distribution with a fixed window 
size as additive bias. 

 Alignment module: 
– Combines the CTC loss with a knowledge 

distillation loss. 
– Minimizes the distance between the 

probability distributions of the sequence 
learning model and the visual module. 

 Ensemble module: 
– Add RGB and optical flow streams decoding 

scores through a posterior fusion scheme. 
– Spike timings synchronization via a guiding 

CTC model. 
 
 
 
 

 
 

VISUAL MODULE 
 Appearance and optical flow features: 

– Full-frame RGB stream. 
– Motion informative image generation via  
   SpyNet [6]. 
– Visual representations based on the VGG11 

network [7].        
– 512-dimensional features. 

DATASETS & EXPERIMENTAL SETUP 
 RWTH-PHOENIX Weather 2014 dataset [8]: 

– 6,841 sentences       1,232-gloss vocabulary. 
– Multi-signer split       5,672 training videos, 540 

validation, and 629 testing. 
 RWTH-PHOENIX Weather 2014T dataset [9]: 

– 8,257 sequences       1,066-gloss vocabulary. 
– Multi-signer setting       7,096 training videos, 

519 validation, and 642 testing. 
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