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Goal:   

Isolated sign language recognition (ISLR) from videos in signer-independent (SI) mode.

Challenges: 
Strongly correlated manual/non-manual modalities.

Inter-personal signing variation.

Previous work [1]: 
Handshapes/mouthing optical flow, skeletal, and appearance feature fusion. 

Attentional encoder-decoder with temporal deformable convolutions for sign recognition.

Paper contributions:
3D-CNN model based on deformable spatial and temporal convolutions.

Spatio-temporal graph convolutional network (ST-GCN) relying on modulated GCNs [2].

Graph construction using 3D joint-rotation parameterization.

Results:
Experiments on a Turkish and a Greek ISLR dataset. 

Achieve new state-of-the-art on Greek corpus and competitive performance on Turkish.

                              

Overview

 RGB frame modality:
3D-CNN for feature extraction from RGB video frames.

oDecouples spatial and temporal convolutions.
o Integrates deformable spatial and temporal convolutions.

 Skeleton sequence modality:
Graph construction: “PIXIE” 3D joint-rotation parameterization of the human skeleton.
Attention-based ST-GCN: modulated GCNs followed by temporal convolutions.

 Ensemble module:
Fuse posteriors from the last fully-connected layers of the two different modalities.

Overview of proposed ISLR system

Deformable 3D-CNN for RGB modality:
Backbone model: 18-layer ResNet2+1D network [4].

o3D convolutional kernels        spatial convolutional filters and temporal ones.
Replace spatial and temporal convolutions with deformable counterparts.
Deformable convolutions:

oConvolutional layer to predict the position offsets.
oAugment sampling grid by adding the predicted offsets to convolution.

 Apply deformable spatial and temporal convolutions in the last 3 network stages.
 Replace the ReLU activation function with the SiLU one.

 Implementation details:
Crop upper body using the 3D joints generated by MediaPipe [5].
Resize to 256x256.
Pretrain our model on the Chinese SL dataset [6].

Our Approach (I)

 Modulated ST-GCN for skeletal modality:
ST-GCN unit involves a spatial GCN followed by a temporal convolution.
Employ modulated GCN: 

oWeight modulation: learnable weight modulation vector to modulate the weight matrix.
oAffinity modulation: adds a learnable mask to the adjacent matrix.

Self-attention: involves a spatial, a temporal, and a channel attention module.
DropGraph [7]: one node dropped together with its neighbor node set.
10 modulated ST-GCN units are utilized, followed by a global average pooling layer.

Graph construction:
3D joint-rotation parameterization of the human pose as graph feature representations.
“PIXIE”: infers 3D body pose and shape parameterization using a moderator.
Regresses parameters for the human shape and pose, as well as the facial expressions.
55 joints with 6 degrees of freedom        25 body pose joints and 15 joints per each hand.
6x55-dimensional feature vectors.

 3D body reconstruction via “ExPose” regression model [8] (2nd column) vs “PIXIE” 
estimator (3rd column).

 Multi-modal Fusion:
Posteriors from the two different modalities are appropriately fused. 
Assign different weights to each modality in accordance with their individual performance.

Our Approach (II)

Datasets & Experimental Setup

AUTSL dataset [9]:
226 Turkish isolated signs performed by 43 signers.
36,302 RGB+D videos in 20 different backgrounds.
Official SI data split:
o28,142 training videos (31 signers).
o4,418 validation videos (5 signers).
o3,742 test videos (7 signers).

ITI GSL database [10]:
15 continuous Greek SL dialogues performed by 7 different signers, 5 times each.
40,826 isolated sign videos with vocabulary size equal to 310.
RGB stream: 30 Hz rate, 648x480 resolution. 
SI SLR via 7-fold cross-validation.
oOne test signer per fold, with SLR models trained on the remaining 6.
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 Ablations on the introduced deformable 3D-CNN model:
Ours achieves 95.39% and 97.12% accuracies on AUTSL and ITI GSL.

Ablations on the proposed ST-GCN:
 Important contributors         Modulated GCN and attention mechanism.
“PIXIE” joint-rotation parameterization         Highest recognition accuracies.

Experimental results

3D-CNN appearance module outperforms the skeletal ST-GCN one.

System evaluation against literature          both modalities fusion considered:
ITI GSL : 97.85% accuracy, outperforming the state-of-the-art  (53% relative error reduction).
AUTSL: 96.67% accuracy, trailing the state-of-the-art result .
Fusion improves performance over appearance stream alone:

o 28% relative error reduction on AUTSL
o 25% relative error reduction on ITI GSL.

Conclusions
Proposed a deep learning model for SI ISLR from RGB videos:

Integration of deformable convolutions in the ResNet2+1D network.
ST-GCN          modulated GCNs, attention mechanism, and temporal convolutions.
Graph construction using 3D joint-rotation parameterization          “PIXIE” approach.
Fuse both modalities in the proposed system.

Investigated the contribution of: 
Fusing two different modalities operating on visual representations of appearance and 

human pose to capture signing activity.

Achieved:
 Competitive performance on AUTSL dataset. 
 New state-of-the-art on the ITI GSL corpus.
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