
Multimodal Fusion and Sequence Learning for

Cued Speech Recognition from Videos

Katerina Papadimitriou 1, Maria Parelli 2,   

Galini Sapountzaki 3, Georgios Pavlakos 4,

Petros Maragos 2, Gerasimos Potamianos 1

1 Dept. of Electrical & Computer Eng., University of Thessaly, Volos, Greece
2 School of Electrical & Computer Eng., National Technical University of Athens, Greece
3 Dept. of Special Education, University of Thessaly, Volos, Greece
4 Electrical Eng. & Computer Sciences, University of California, Berkeley, CA, U.S.A.

HCI INTERNATIONAL 2021 - International Conference on

Human-Computer Interaction 



French CS articulation 
(figure modified from [2]).

5 possible 
hand positions

8 possible 
hand shapes

8 possible 
lip shapes

(not shown)

34 distinct 
phonemes

Overview

� Goal:

� Address automatic cued speech recognition

(CSR) from videos with no artificial markings.

� Challenges: 

� Phonetic information from simultaneous articulation

of mouthing patterns, hand positioning, and gestures.

� Asynchrony between hand and lip articulation.

� Our earlier approach [1]: 

� Tracking: hand and mouth via a hybrid method.

� Features: 3D-CNN appearance based and positional embeddings.

� Recognizer: time-depth separable (TDS) convolutional encoder

and attentional convolutional decoder [3].

� Here:

� Tracking: via OpenPose framework [4].

� Features: investigate additional benefit of 2D and 3D (regressed) skeletal keypoints.

� Recognizer: use connectionist temporal classification (CTC) [5] for decoding.

[1] Papadimitriou & Potamianos, “A fully convolutional sequence learning approach for cued speech recognition from 
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[3] Hannun et al., “Sequence-to-sequence speech recognition with time-depth separable convolutions”, Interspeech ’19.

[4] Cao et al., “OpenPose: Realtime multi-person 2D pose estimation using part affinity fields,” IEEE TPAMI ’21.
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networks,” ICML ’06.



� Proposed deep learning-based approach architecture:

� Our main contributions: 

� 2D skeletal data acquisition of the CS interpreter via OpenPose framework.

� Hand and mouth region segmentation through the 2D skeletal coordinates.

� 3D hand skeletal coordinates extraction by a 2D-to-3D hand-pose regression architecture. 

� Fusion of various feature streams / representations of manual and non-manual articulators.

� Time-depth separable (TDS) convolution block structure based encoder

� Connectionist temporal classification (CTC) decoder.

� Results:

� Experiments on 2 publicly available CS datasets.

� Inclusion of skeletal data to the feature fusion module benefits system performance. 

� Better than current state-of-the-art CSR methods.

Our Approach



CSR System – Visual Front End (I)

� Hand and mouth detection:

� Based on OpenPose detector of human joints.

� Returns 25 body-pose keypoints, 21 joints for each hand,

and 70 face keypoints.

� 2D hand and mouth keypoint features:

� Retain 21 joints of the signing hand and 20 mouth keypoints. 

� Apply normalization to their coordinates.

� Obtain 82-dim features (42-dim for the hand and 20-dim for the mouth).

� Hand and mouth appearance features:

� Extract region-of-interests (ROIs) based on the OpenPose skeleton.

� Feed ROIs to 3D ResNet-34 network [6].

� Obtain 512-dim spatio-temporal appearance features for each ROI

(512-dim for hand ROI and 512-dim for mouth ROI).

[6] Hara et al., “Learning spatio-temporal features with 3D residual networks for action recognition,” CVPR ’17.



� 3D hand keypoint features:

� Regress 2D hand joints to the 3D space, using a two-layer DNN.

� DNN input: 21 hand joint coordinates (2D) from OpenPose.

� DNN output: 21 hand joint coordinates in 3D space.

� Apply normalization to the 3D joints.

� Obtain 63-dim features (21 x 3).

� Hand positioning features:

� Employ 2D coordinates of the upper-most hand skeletal joint.

� 2D-CNN based classification of hand positioning relative to mouth.

� Obtain 64-dim hand positional embeddings.

� 5 positions for French CS and 4 positions for British English CS.

[7] Parelli et al., “Exploiting 3D hand pose estimation in deep learning-based sign language recognition 

from RGB videos,” ECCV-W ’20.

CSR System – Visual Front End (II)



� Feature fusion (vector concatenation) yields 1233-dim feature vector: 

� 42-dim for 2D hand keypoints.

� 40-dim for 2D mouth keypoints.

� 63-dim for 3D hand keypoints.

� 512-dim for hand ROI appearance (3D CNN).

� 512-dim for mouth ROI appearance (3D CNN).

� 64-dim for hand positional embeddings.

� Sequence learning: 

� Time-depth separable convolutional encoder (TDS).

� CTC loss based decoding.

CSR System – Feature Fusion and Sequence Model



� French CS dataset [8]:

� 2 repetitions of 238 French sentences performed by a professional CS interpreter.

� 11,770 phonemes in total belonging to 34 classes.

� Upper-body RGB video data available at 50 fps and 720x576-pixel resolution.

� 8 lip patterns, 8 handshapes, and 5 different hand positions (34 phonetic classes).

� British English CS dataset [9]:

� 97 British English sentences recorded by a professional CS interpreter.

� Upper-body color video images available at 25 fps and 720x1280-pixel resolution.

� 4 hand positions for the 12 monophthongs, 4 hand slips for the 8 diphthongs, and 8 hand 
shapes for the 24 consonants (44 phonetic classes).

� Experimental framework:

� Ten-fold cross-validation.

� 80% of each fold used for training, 10% for validation, and 10% for testing.

� Phonetic error rate (PER, %) reported.

Datasets and Experimental Setup

[8] Liu et al., “Visual recognition of continuous cued speech using a tandem CNN-HMM approach,” 

Interspeech ’18.

[9] Liu et al., “Automatic detection of the temporal segmentation of hand movements in British English 

cued speech,” Interspeech ’19.



� Evaluation of various feature stream combinations.

� Fusion of all feature streams yields the best results on both CS corpora.

� Significant improvements on both datasets compared to our earlier model (state-of-the-art):

� 8.87% absolute PER reduction (from 29.12% to 20.25%) for French CS.

� 3.67% absolute PER reduction (from 36.25% to 32.58%) on British English CS.

Experimental Results (I)



Experimental Results (II)

� Proposed model comparison against various sequence learning models on both CS sets:

� A one-layer long short-term memory (LSTM) encoder coupled with CTC decoding.

� A one-layer gated recurrent unit (GRU) encoder and CTC decoding.

� A Transformer encoder complemented with a CTC decoder.

� Two feature fusion schemes employing all feature streams:

� Synchronous articulation: All features concatenation discarding asynchrony.

� Asynchronous articulation: Hand-related feature streams artificially delayed by a fixed amount in time.

� The proposed model yields the best results on both sets when there is no enforced  time shift.



Experimental Results (III)

� Performance evaluation of the proposed model under a number of variations:

� Replace the 3D-CNN with a 2D-CNN (ResNet-18 [10] ) for appearance feature extraction:

o Degraded PER by over 2% absolute for the French CS dataset.

o Degraded PER by about 3.5% absolute for the British English CS dataset.

� The number of TDS blocks in the TDS convolutional encoder:

o Increase the number of channels keeping the same receptive field.

o Worse PERs on both corpora.

[10] He et al., “Deep residual learning for image recognition,” CVPR ’16.



� Proposed a deep learning model for effective CS recognition from upper-body videos:

� Spatio-temporal feature extraction and fusion.

� State-of-the-art deep-learning based sequence learning model.

� Highlighted how the incorporation of multiple representation streams, TDS convolutional 
encoder and CTC decoding improves feature learning performance.

� Inclusion of skeletal data to the feature fusion module benefits system performance.

� Inferred 3D hand skeletal data boosted CS recognition when added on top of all other spatio-

temporal streams.

� Demonstrated that the proposed model outperforms other sequence learning architectures.

Conclusions
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