The SL-ReDu Environment for Self-monitoring and Objective Learner Assessment in Greek Sign Language

> Eleni Efthimiou¹, Stavroula-Evita Fotinea¹, Christina Flouda¹, Theodor Goulas¹, Gkioulan Ametoglou¹, Galini Sapountzaki², Katerina Papadimitriou³, Gerasimos Potamianos³

¹Institute for Language & Speech Processing, Athena RC (GREECE) ²Department of Special Education, University of Thessaly (GREECE) ³Electrical & Computer Engineering Department, University of Thessaly (GREECE)

Presentation structure

- * SL-ReDu project overview
- * Educational content
- * Platform features and functionalities
- * HCI in service of perception and
- * Active student performance
- * Conclusion and future plans

Educational content (A0 and A1 levels of CEFR)

Features and modules of the SL-ReDu platform

Sample 1. theory and consolidation mechanism

Sample 2. self-monitoring exercise

Sample 3. video based content presentation

Sample 4. video/avatar based content presentation

Sample 5. sign perception in time controlled objective evaluation

Video recognition in self monitoring & objective assessment of students' linguistic production

Interaction procedure:

- A picture, written word or video prompt with instructions appears on the left
- 2. Permission is asked for the platform to use camera
- 3. Students record themselves
- 4. Students preview and revise their production

- 5. Students upload production
- 6. Automatic recognition runs
- 7. A system response of correct, incorrect, or invalid result appears on the student's screen

Automatically recognized signs are formed with the 13 most frequently occurring handshapes in GSL

Sample 6. sign capturing to feed recognition for student performance evaluation

Sample 7. student performance verification and submission for recognition

The embedded SL recognition system

SL recognition approach:

- ✓ **Deep learning-based** GSL recognition from videos.
- Targets fingerspelling, isolated, continuous signing.

Our approach contains four distinct pillars:

- ✓ Visual detection of SL articulators (manual / non-manual).
- ✓ Visual **feature representations** of the articulators.
- Multi-stream feature fusion.
- ✓ An attentional encoder-decoder sequence learning for sign prediction.

Е

е

Conclusion & Future work

- * SL-ReDu HCI implementation is completed * Currently under technical evaluation &
- * On-going content enrichment
- * User evaluation planned in next academic semester

THANK YOU!

Questions? pls. contact: eleni_e@athenarc.gr/evita@athenarc.gr

Acknowledgments

The research work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant" (Project Number: 2456).

