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Abstract
In this paper, we propose a novel Transformer-based ap-

proach for continuous sign language recognition (CSLR) from
videos, aiming to address the shortcomings of traditional Trans-
formers in learning local semantic context of SL. Specifically,
the proposed relies on two distinct components: (a) a window-
based RNN module to capture local temporal context and (b) a
Transformer encoder, enhanced with local modeling via Gaus-
sian bias and relative position information, as well as with
global structure modeling through multi-head attention. To
further improve model performance, we design a multimodal
framework that applies the proposed to both appearance and
motion signing streams, aligning their posteriors through a
guiding CTC technique. Further, we achieve visual feature and
gloss sequence alignment by incorporating a knowledge distil-
lation loss. Experimental evaluation on two popular German
CSLR datasets, demonstrates the superiority of our model.
Index Terms: continuous sign language recognition, RNN,
Transformer, RWTH-PHOENIX Weather 2014, RWTH-
PHOENIX Weather 2014T

1. Introduction
Over the past three decades, significant attention has been de-
voted to automatic SLR from video due to its potential to pro-
vide accessibility for the hearing impaired. Since SL consti-
tutes a complex non-verbal communication means, with nu-
merous manual and non-manual cues participating in signing,
its recognition is an intricate task suffering from articulations
complexity and correlation, as well as the signing variability
among subjects. Such issues naturally arise when dealing with
isolated signs [1–3], but are substantially more challenging in
the instance of continuous SLR [4–6] due to the absence of
gloss-level segmentation. The task of CSLR from video data
constitutes the focus of our paper.

A critical aspect of CSLR research lies on the sequence
modeling approach used for gloss prediction. For this purpose,
early systems rely on HMM-GMMs [7, 8], while most con-
temporary CSLR schemes employ recurrent neural networks
(RNNs), typically the LSTM networks [9] or bi-directional
LSTM (BiLSTM) [10], in conjunction with connectionist tem-
poral classification (CTC) [11]. Specifically, the work in [8]
addresses the CSLR task employing a 2D convolutional neural
network (CNN) and a BiLSTM encoder for spatio-temporal fea-
ture extraction, as well as the CTC loss function for alignment
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purpose. Further, in [12] a 3D-CNN model is employed as vi-
sual feature learner and a stacked dilated convolutional network
with CTC is applied for sequence learning. In addition, several
proposed systems employ the Transformer encoder with CTC
for sequence learning, such as the works in [13, 14]. More-
over, various approaches treat CSLR as a video-to-text transla-
tion task, employing attention-based encoder-decoders [15–17].
Recently, some efforts in the literature have focused on the com-
bination of temporal convolutions (TCNs), which are suitable
for capturing temporal features, with RNN encoders [4,5,18] or
Transformers [6, 19, 20].

Despite their remarkable performance due to their ability to
capture long-term dependencies, Transformers neglect the local
structures that exhibit in SL sequences. To this end, the work
in [6] introduces a local Transformer coupled with relative po-
sition encoding [21] and localness modeling through a Gaus-
sian bias [22]. Inspired by the former and the work in [23],
which combines RNN and Transformer encoder, in this work,
we propose a novel model that relies on a window-based RNN
(LSTM) module followed by a multi-head self-attention based
Transformer encoder. Specifically, the RNN module operates
on short windows of the input sequence, generating visual la-
tent representations that are fed into the Transformer, which
is enhanced with local self-attention via relative position en-
coding and Gaussian bias, for capturing short-term dependen-
cies of the visual latent representations. In addition, we adopt
multi-head attention mechanism in the Transformer for learning
global structures.

The second axis concerns the visual module, as well as the
type of visual modalities integrated in the CSLR framework.
Most works in the literature rely only on RGB appearance rep-
resentations of articulation regions or of the full video frame
based on 2D or 3D CNNs [12, 16, 24]. Others combine skeletal
features with appearance representations [6, 18], while our pre-
vious work in [25] integrates appearance representations and
optical flow features into human pose, modeled via ST-GNNs.
In this work, based on the assumption that different modalities
could potentially complement each other, we design a multi-
modal framework, where the proposed CSLR sequence learning
model operates on two different streams, i.e., RGB appearance
frames and optical flows, and their scores are fused after being
aligned through the CTC guiding technique of [26]. Note that
for image feature learning a 2D-CNN model is employed.

Finally, a crucial component in CSLR concerns the align-
ment module used for aligning the features extracted from
the sequence learning model with the gloss sequence. Most
works in the literature employ a CTC-based alignment mod-
ule [8, 12, 18]. Nevertheless, solely utilizing the CTC loss may
cause training problems due to the fact that the extracted fea-
tures may not be sufficient to yield precise recognition out-
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Figure 1: (a) An overview of the proposed multimodal CSLR model that generates a sequence of glosses via an RNN module and a
Transformer encoder and (b) self-attention enhanced with local modeling via Gaussian bias and relative position encoding (RP).

comes. To tackle this, the works in [5,12,27] employ stage opti-
mization strategies to improve the extracted features, while the
work in [6] integrates auxiliary learning to enhance the CSLR
backbones consistency. Motivated by the above and inspired
by the work in [5], in this work we design an alignment mod-
ule, which combines the CTC loss with a knowledge distillation
loss [28], which aligns the probability distribution produced by
the sequence learning model and the probability distribution ob-
tained by the RNN module.

In summary, our contributions lie on: (i) the development
of a novel sequence learning model that combines a window-
based RNN module and a Transformer encoder, enhanced with
localness modeling via relative position encoding and a Gaus-
sian bias; (ii) the design of a multi-modal framework, which ap-
plies the proposed sequence learning model to an RGB and an
optical flow stream, and ensembles them by performing CTC
guiding alignment; and (iii) the conjunction of the CTC loss
with a visual alignment loss. To the best of our knowledge, the
integration of a window-based RNN module with a local Trans-
former has never been investigated in the literature.

We evaluate the introduced approach on two popular large-
scale German CSLR benchmarks, the “RWTH-PHOENIX
Weather 2014” [29] multi-signer corpus and the “RWTH-
PHOENIX Weather 2014T” dataset [13], and we provide in-
depth ablations that highlight our innovations. We achieve com-
petitive performance on both datasets compared to the current
state-of-the-art. Further, the proposed outperforms our baseline,
i.e., TCN and Transformer based sequence learning module.

2. Our Approach

As shown in Figure 1, our approach constitutes a deep-learning
based model that learns from two different modalities, namely
RGB frames and optical flows. The baseline CSLR model used
for both streams composes of: (i) a visual module, which adopts
a 2D-CNN based spatial feature learner and a window-based
RNN module for local context visual features extraction; (ii)
a sequence model relying on a Transformer encoder enhanced
with relative position encoding and a Gaussian bias; and (iii) an
alignment module integrating both CTC and knowledge distil-
lation loss functions. To ensemble the RGB and optical flow
streams, a guiding CTC technique is employed.

2.1. Appearance and Optical Flow Features

As already mentioned, we employ the full-frame RGB stream,
as well as the optical flow one as an additional visual rep-
resentation, since it effectively captures the motion informa-
tion of the numerous SL articulators. For this purpose, we
use the SpyNet model [30] generating motion informative im-
ages. For both appearance and optical flow features, we con-
sider visual representations based on the VGG11 network [31],
encouraged by its prominent visual representation learning ca-
pability in the CSLR task [4, 6]. In particular, an image frame
sequence of length T , x = (x1,x2, ...,xT) ∈ RT×C×H×W

with C= 3 for both RGB and optical flow frames, H denoting
the height, and W representing the width of frames, is appropri-
ately rescaled (256×256) and cropped to 224×224, before be-
ing fed to the 2D-CNN model. The 2D-CNN model follows the
VGG11 architecture pre-trained on the ImageNet corpus [32]
and is coupled with a global average pooling layer, yielding
512-dimensional features (z = (z1, z2, ..., zT) ∈ RT×512).

2.2. Window-based RNN module

Before learning global dependencies via the multi-head atten-
tion mechanism, we refine the visual representations of each
frame to incorporate the sequential and local information of
its neighborhood. To capture the local short-term dependen-
cies of the frame sequence, the visual representations extracted
from the 2D-CNN feature learner are fed to an RNN module
that operates on local windows of frames producing latent rep-
resentations for each of them. In particular, inspired by [23],
instead of applying RNNs to the whole sequence, we rear-
range the initial frame feature sequence into many short ones
using a local window of fixed size M for each target frame,
such that each short sequence includes M consecutive frames
with the last being the target frame. To achieve this, we pre-
pad the beginning of the input sequence by M-1. As shown
in Figure 2, M frames in the local window form a short se-
quence, which is subsequently processed by the RNN unit, pro-
ducing the latent representations. More precisely, the local se-
quence zt = (zt−M−1, zt−M−2, ..., zt) with window size M,
is passed through the RNN unit, generating the hidden state rep-
resentation st. Note that the RNN module relies on BiLSTM
networks [9] and is followed by a normalization layer.
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Figure 2: Illustration of the window-based RNN module (M=3).

2.3. Transformer encoder

Each gloss in a SL video only lasts a few frames, indicating
the value of local contexts. Motivated by this, here, we employ
a Transformer encoder, enhanced with local modeling, as well
as with global structure modeling for sequence learning. To
capture the global long-term dependencies, a multi-head atten-
tion layer followed by a feed-forward one, is applied (see also
Figure 1). Both layers are coupled with normalization. Specif-
ically, the visual feature representation sequence s ∈ RT×512

extracted from the window-based RNN module is subjected to
three seperate linear layers generating the queries Q ∈ RT×512,
the keys K ∈ RT×512, and the values V ∈ RT×512. Since
multi-head attention is adopted, Q, K, and V are splitted, re-
sulting in Qh,Kh,Vh ∈ RT×512/nh , with nh denoting the
number of heads and h = 1, ..., nh. Subsequently, each split
passes independently through a self-attention layer producing
the attention scores, which are then combined together to pro-
duce the final one. The attention score for each head is com-
puted as follows:

attn =
Qh(Kh)

′

√
512/nh

∈ Rnh×T×T .

Since local context dependencies are critical to the CSLR per-
formance, we enhance the self-attention layer with localness
modeling. As shown in Figure 1, to obtain this we add relative
representations [21] to the queries K and values V enhancing
neighboring relations. To further enhance local context model-
ing, we employ the Gaussian distribution with a fixed window
size as additive bias to mask the self-attention scores. Thus, the
output of the multi-head self-attention layer is formulated as:

F = concat{softmax(attnh + biash)V h}nh
h=1.

2.4. Alignment Module

As already mentioned, our CSLR model involves an alignment
module, which combines the CTC loss with a knowledge dis-
tillation loss [28] aligning the probability distribution generated
by the sequence learning model and the probability distribution
obtained by the RNN module’s visual features. In particular,
the latent representations derived from the Transfromer encoder
are fed to a linear projection layer followed by a softmax activa-
tion, yielding probabilities distribution pw(G|F) for all possi-
ble signing videos F to gloss sequences G alignments, modeled
as follows: pw(G|F) =

∑
πεB(π|F), where π is a sequence

path with πt ε { , G1, G2, ..., GL}. Note that, L is the gloss

vocabulary size, which is further complemented with the blank
character, and B denotes all the possible label paths. Thus, the
CTC loss is defined as: LCTC = − log pw(G|F).

Correspondingly, for the visual alignment loss function we
pass the visual features extracted from the RNN module through
a linear projection layer followed by a softmax activation, yield-
ing probabilities distribution pv(G|S). Subsequently, we incor-
porate the KL-divergence loss function introduced in [5], which
minimize the distance between the probability distribution pro-
duced by the sequence learning model and the probability dis-
tribution generated from the output of the visual module, for-
mulated as:

LV = KL(softmax(
S

τ
), softmax(

S

τ
)),

with τ being the temperature. In particular, training is con-
ducted using a linear combination of the two loss functions, i.e:
LM = LCTC + LV .

2.5. Ensemble Module

Since CTC based alignment models suffer from non-aligned
spike timings in the probability distribution, direct posterior fu-
sion (late fusion) of the two modalities, i.e, the RGB and the
optical flow streams, turn out to be ineffective. To tackle this,
we follow the two-step training approach of [26]. Specifically,
the CSLR model trained using only the RGB modality is treated
as the guiding model. During the guided model training, namely
that of the optical flow stream, the probability distributions pre-
dicted by the guiding model are converted to a maskM(F ) with
ones at the output symbol with the highest posterior and zeros
at other symbols, as well as the blank symbol. Then, the proba-
bility distribution P (F ) generated by the guided model are sub-
jected to element-wise multiplication with the mask M . Thus,
a masked probability distribution P̂ (F ) = M(F ) � P (F ) is
generated, which is used to compute the guided loss function
defined as: LG = −∑

P̂ (F ). Finally, the overal training loss
is formulated as: L = LCTC + LG

3. Experimental Evaluation
3.1. Dataset and Experimental Framework

RWTH-PHOENIX Weather 2014 [29]: This is a continu-
ous German SL dataset, providing 6,841 different gloss sen-
tences, extracted from the German TV station PHOENIX news
and weather forecast. The corpus signed vocabulary consists of
1,232 unique glosses (around 80,000 gloss instances) performed
by 9 different signers. Video data is provided at a frame-rate of
25 Hz and 210 × 260-pixel resolution. The corpus comprises
two settings: multi-signer and signer-independent. In the scope
of this work, we employ the multi-signer setting, where 5,672
video samples are allocated to training, 540 to validation, and
629 to testing.
RWTH-PHOENIX Weather 2014T [13]: This dataset consti-
tutes an expansion of the RWTH-PHOENIX Weather 2014 [29]
corpus, involving both gloss and spoken language translation
sentence pairs for German SL video samples of weather fore-
casts. The corpus volume involves in total 8,257 German SL
sequences with frame resolution of 210× 260 at a rate of 25Hz
expressed by 9 signers leading to a vocabulary of 1,066 unique
glosses and 2,887 spoken language words, respectively. We use
the existing multi-signer set, comprising 7,096 videos for train-
ing, 519 for validation, and 642 for testing.
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Table 1: Ablation study for the RNN module (RNN), the rel-
ative position encoding (RP), and the Gaussian bias (GB) of
single and both modalities. The evaluation is conducted using
the “RWTH-PHOENIX Weather 2014” dataset.

Modalities RNN RP GB WER (%)

RGB

27.55
X 23.25

X X 24.05
X X X 21.25

Optical Flow

29.18
X 26.20

X X 25.87
X X X 25.07

Both X X X 20.89

3.2. Implementation Details

The RNN module comprises a set of two-layer BiLSTMs with
hidden dimensionality equal to 512. Both layers are coupled
with a normalization layer. For the sequence learning model,
we employ a 3-layer Transformer encoder with hidden states of
512 and 8 heads. As in [6], for the Gaussian bias we employ
a fixed window size equal to 6.3 for both datasets. Training
is conducted using the Adam optimizer [33] with initial learn-
ing rate being equal to 0.0001 decayed by a factor of 0.0001, a
dropout rate of 0.1, and a batch size of 2. During inference, we
use beam search decoding with beam width 5. Further, temper-
ature τ in the LV loss is fixed to 8. The model is implemented
in PyTorch [34] and experiments are carried out in a NVIDIA
GeForce RTX 3090 GPU.

3.3. Results

Our CSLR model performance is evaluated quantitatively in
terms of word error rate (WER) (%), taking into account the
number of substitutions, deletions and insertions in the pre-
dicted hypotheses. As shown in Table 1, the introduced model
is firstly evaluated on the “RWTH-PHOENIX Weather 2014”
dataset against some variations it. Specifically, ablation study
for the various components of the proposed are provided when
single and both modalities are considered. As deduced from the
Table 1, our model demonstrates superior performance when all
modaliies are considered, yielding 20.89% WER. This reveals
the benefit of using multiple feature streams that are comple-
mentary to each other. In addition, the RNN module, as well
as the relative position encoding seem to be the most robust
components, while Gaussian bias incorporation benefits system
performance. Further, the RGB appearance modality achieves
lower WER(%) than the optical flow one. Moreover, in Table 2
we examine the contribution of the various loss functions incor-
porated into our model. As it can be readily seen, the higher
contribution to the system performance is obtained via the CTC
guiding loss function, while visual alignment loss further im-
poves WER by 0.86% absolute.

In Tables 3 and 4 evaluation comparison of the proposed
against current state-of-the-art for the “RWTH-PHOENIX

Table 2: Ablation study for loss functions. Evaluation compari-
son on the “RWTH-PHOENIX Weather 2014” dataset.

Proposed Model WER (%)
w/o LV 21.75
w/o LG 24.16
w LV & LG 20.89

Table 3: Evaluation comparison on the “RWTH-PHOENIX
Weather 2014” dataset in terms of WER (%).

Model WER (%)
SubUnet [35] 40.70
SLT [36] 24.59
CNN-LSTM-HMM [37] 24.10
VAC [4] 22.30
SMKD [5] 21.00
STMC [18] 20.70
C2SLR [6] 20.40
STTN [20] 19.98
Proposed 20.89

Table 4: Evaluation comparison on the RWTH-Phoenix-
Weather-2014T dataset in terms of WER (%).

Model WER (%)
Re-Sign [8] 26.60
SFD+SGS+SFL [14] 26.10
Bi-ST-LSTM-A [16] 24.68
SLT [36] 24.59
CrossModal [24] 24.30
CNN-LSTM-HMM [37] 24.10
TDCNN [15] 23.70
SMKD [5] 22.40
ST-GCN [25] 21.34
STMC [18] 21.00
C2SLR [6] 20.40
Proposed 20.73

Weather 2014” multi-signer corpus and the “RWTH-PHOENIX
Weather 2014T” dataset is provided. As it can be observed
our model achieves competitive performance on the two CSLR
datasets, namely 20.89% WER on the “RWTH-PHOENIX
Weather 2014” multi-signer corpus and 20.73% WER on the
“RWTH-PHOENIX Weather 2014T” dataset. Specifically, in
both cases, our model outperforms most results in the litera-
ture, coming very close to the state-of-the-art (19.98% WER)
of [20] in the “RWTH-PHOENIX Weather 2014”dataset, which
employes a spatio-temporal based Transformer and the state-
of-the-art (20.40% WER) of [6] in the “RWTH-PHOENIX
Weather 2014T”dataset, which relies on local Transformer en-
coder and two auxiliary constraints for enhancing sequence
learning. It should be noted that our model involves 36M pa-
rameters and the inference speed as measured on the NVIDIA
GeForce RTX 3090 GPU is 0.29 seconds per video. Finally, we
evaluate the performance of our model against one variation of
it, where the RNN module is substituted by a TCN layer, in-
creasing WER by 0.78% absolute on the “RWTH-PHOENIX
Weather 2014” multi-signer corpus.

4. Conclusions
In this work, we focus on the intricate task of CSLR investi-
gating the contribution of an innovative Transformer-based ap-
proach that seeks to capture both local and global signing dy-
namics. In particular, we employed a window-based RNN mod-
ule to capture local temporal context and a Transformer en-
coder, enhanced with local context modeling through Gaussian
bias and relative position information, as well as with global
structure learning obtained via multi-head attention. Our model
learns from two modalities, RGB and optical flow streams,
which are fused via CTC guiding, achieving competitive per-
formance on two large-scale German CSLR datasets.
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