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ABSTRACT

Automatic sign language recognition (SLR) remains challenging,
especially when employing RGB video alone (i.e., with no depth
or special glove-based input) and under a signer-independent (SI)
framework, due to inter-personal signing variation. In this paper, we
address SI isolated SLR from RGB video, proposing an innovative
deep-learning framework that leverages multi-modal appearance-
and skeleton-based information. Specifically, we propose three
components for the first time in SLR: (i) a modified version of the
ResNet2+1D network to capture signing appearance information,
where spatial and temporal convolutions are substituted by their
deformable counterparts, accomplishing both prevalent spatial mod-
eling potential and motion-aware modeling adaptability; (ii) a novel
spatio-temporal graph convolutional network (ST-GCN) that inte-
grates a GCN variant, involving weight and affinity modulation for
modeling diverse correlations between different body joints beyond
the physical human skeleton structure, followed by a self-attention
layer and a temporal convolution; and (iii) the “PIXIE” 3D human
pose and shape regressor to generate 3D joint-rotation parameteri-
zation used for ST-GCN graph construction. Both appearance- and
skeleton-based streams are ensembled in the proposed system and
evaluated on two datasets of isolated signs, one in Turkish and one
in Greek. Our system outperforms the state-of-the-art on the second
set, yielding 53% relative error rate reduction (2.45% absolute),
while it performs on par with the best reported system on the first.

Index Terms— SI isolated sign language recognition, de-
formable 3D-CNN, ST-GCN, modulated GCN, “PIXIE”

1. INTRODUCTION

Automatic SLR from videos constitutes an important research prob-
lem, gaining considerable attention in recent years, enhancing ac-
cessibility for the hearing impaired, while also being incorporated in
sign language (SL) learning applications [1–3]. Nevertheless, SLR
remains an intricate task due to the multitude of strongly correlated
manual and non-manual modalities, such as handshapes, shoulder
motion, body leaning, head pose, mouthing patterns, eye gaze, and
eyebrow movement, all contributing to sign formation [4], as well
as the scarcity of data resources. Such issues are substantially more
challenging for SLR under an SI setting [5–9], which is adopted in
this work, due to the inherent articulation variability among signers.

Following deep-learning and computer vision advances, many
recent SLR works have been combining appearance-based descrip-
tors derived from RGB or optical flow frames and appropriate rep-
resentations of the signer’s skeletal information, achieving the state-

This work was supported by the Hellenic Foundation for Research and
Innovation (H.F.R.I.) under the “1st Call for H.F.R.I. Research Projects to
support Faculty Members & Researchers and the procurement of high-cost
research equipment grant” (Project “SL-ReDu”, Project Number 2456).

of-the-art on various isolated SLR datasets [10–14]. For example,
in [6] a 3D-CNN model is combined with a unified ST-GCN called
G3D, in [7] a multi-modal setup is employed that includes 2D human
pose landmarks and hand images, and in [8] an ensemble approach
exploits multi-modal information from skeletal keypoints and fea-
tures, as well as RGB, optical flow, and depth. Also, in our earlier
work [15], the contribution of optical flow, human skeletal features,
and appearance features of handshapes and mouthing is explored.

Here, motivated by the above, we propose a system focusing
on SI isolated SLR relying on two main modalities: (i) a 3D-CNN
model for capturing the spatio-temporal SL articulation dynamics
and (ii) a ST-GCN to learn the spatial and motion correlation of the
human skeletal joints (see also Fig. 1). Both aforementioned models
are trained separately, and their outputs are combined through an en-
semble module that exploits the last fully-connected layer outcome.

Most deep-learning SLR works rely on appearance-based
spatio-temporal features, extracted by applying 2D-CNNs on RGB
data [11, 16] and/or motion informative frames [15]. Lately,
there have been works adopting 3D-CNNs for this purpose, since
such models can capture spatio-temporal SL articulation correla-
tions [8,12,14]. Specifically, in [14] an inflated 3D-CNN is deployed
for extracting the spatio-temporal feature sequence to learn long-
range temporal dependencies, while in [8] a pretrained ResNet2+1D
is used that decouples the 3D-CNN spatial and temporal convo-
lutions, yielding higher accuracy over other popular 3D-CNNs.
Here, our first innovation is that we employ the ResNet2+1D net-
work [17] as a backbone, but we substitute the spatial and temporal
convolutions with their deformable counterparts. These are suitable
for learning complex geometric transformations and inter-frame
motions, by augmenting the convolution receptive field.

Due to the scarcity of SL data resources, data-hungry appearance-
based methods struggle to attain their full potential. To mitigate this,
recent studies leverage progress in vision-based extraction of whole-
body keypoints and explore their integration into skeleton-based
GCNs. Specifically, in [18] a ST-GCN approach is introduced based
on skeletal data, capturing the dynamic aspects of SL cues in the
spatial and temporal domains, while in [8] a spatial decoupling
GCN is used, followed by an attention mechanism and a temporal
convolution. Although decoupled GCNs employ different weight
matrices for each graph node enhancing performance, the model size
rises. Here, to rectify this, we adopt modulated spatial GCNs [19]
that employ weight modulation to adjust the shared feature trans-
formation for each node, maintaining a small model size. Another
limitation of regular GCNs is that the graph is usually predefined
following the human skeleton structure, while SL involves motion
patterns beyond the natural body joint connections. To address this,
we employ an affinity modulation technique that adds a learnable
mask to the adjacent matrix. Moreover, we integrate an attention
module, as well as a temporal convolution layer. This constitutes the
second innovation of this paper.



Fig. 1. Proposed isolated SLR model architecture: Two groups of streams are fused, namely a deformable ResNet2+1D network applied
on the RGB image frames (appearance modality) and a ST-GCN model, which incorporates modulated spatial GCN (SCN), self-attention
module, and temporal convolution (TCN) that operates on the 3D joint-rotation feature based skeleton graph (skeleton-modality).

For graph construction, most works rely on 2D skeletal joints [6,
8], while in [20] the ST-GCN employs 3D skeletal joints as graph
features. Recently, in [21] we have introduced a model for continu-
ous SLR that ensembles ST-GCNs based on both 2D and 3D skeletal
joint graph features, as well as 3D joint-rotation parameterization.
The third innovation of this paper regards the graph construction,
where we utilize the 3D joint-rotation parameterization of the human
skeleton, which instead of estimating via the “ExPose” human pose
regression model [22], we deploy a recently introduced 3D human
pose and shape regressor, the so-called “PIXIE” [23], that achieves
state-of-the-art performance in many benchmarks.

In summary, our work contributions are: (i) the development of
a novel version of the ResNet2+1D network that incorporates de-
formable spatial and temporal convolutions; (ii) the design of an in-
novative ST-GCN unit that relies on modulated GCNs; and (iii) the
use of 3D joint-rotation parameterization, extracted via the “PIXIE”
3D pose and shape regressor, for graph construction. To date, none
of the above have been investigated in conjunction with SLR.

We evaluate our introduced approach on two popular isolated
SLR benchmarks, the “AUTSL” [11] and “ITI GSL” [14] corpora,
and we provide in-depth ablations that highlight our innovations.
Comparing our method to state-of-the-art SI SLR systems, we
achieve superior performance on the second dataset and very com-
petitive results on the first.

2. OUR APPROACH

As already mentioned, our approach composes of two main modali-
ties, a spatio-temporal 3D-CNN, which integrates deformable spatial
and temporal convolutions for feature extraction from RGB videos,
and an attention-based ST-GCN model that relies on modulated
GCNs, as well as temporal convolutions to learn motion dynamics
from the human skeleton. All are detailed next.

2.1. Deformable 3D-CNN

Due to the strong spatio-temporal correlation of the various SL ar-
ticulators participating in signing, with each one carrying specific
information content, their visual representation is a key aspect in
SLR. Thus, for spatio-temporal visual feature learning, a 3D-CNN
model is employed that decouples spatial and temporal convolutions
of 3D-CNNs. Adopting the 18-layer ResNet2+1D network [17]
as the underlying architecture, we replace the spatial and temporal
convolutions with their deformable counterparts. Encouraged by the

effective modeling of geometric variations obtained by deformable
CNNs evaluated on challenging benchmarks in multiple domains,
we choose them for learning human-related complex geometric
transformations and inter-frame motions.

In ResNet2+1D, 3D convolutional kernels of dimension t×K×
K are replaced by spatial convolutional filters with dimensionality
of 1 × K × K coupled with temporal convolution filters of size
t × 1 × 1. In this work, instead of using regular convolutions op-
erating on a fixed sampling grid, we append learned offsets to the
grid of regular convolutional kernel enlarging the convolution recep-
tive field. Specifically, we integrate deformable convolutions that
operate on two steps: (i) a regular convolutional layer is applied pre-
dicting the position offsets ∆pn, where n = 1, ..., |R| with R being
the sampling grid of a regular convolution and (ii) the sampling grid
is augmented by adding the predicted offsets ∆pn to the normal con-
volution operation.

Despite the robustness of deformable convolutions, their com-
putational cost is higher than that of regular convolutions. For that
purpose, we selectively apply them in the three last stages, instead
of employing them in the entire network. Note that we performed
experiments replacing the convolutions at all stages and at different
stages of the ResNet2+1D model, concluding that adopting them at
the last three stages of the network is the most accurate choice.

Finally, to further strengthen our model capacity, we replace the
ReLU activation function with the SiLU one [24].

2.2. Attention-based Modulated ST-GCN

We introduce an ST-GCN that relies on a modulated GCN followed
by a temporal convolution enhanced with an attention mechanism.
For graph construction, we employ the 3D joint-rotation parameter-
ization of the human skeleton. All are detailed next.

2.2.1. Graph Construction

GCNs are a generalized variant of CNNs, where filters operate on
graph-structured data with nodes corresponding to human-body
joints. Specifically, a graph is defined as G = (V,E) , where V
denotes the node set with N human skeletal joints, and E accounts
for the intra-skeleton edges. The edges can be represented by an
adjacent matrix A ∈ {0, 1}N×N, where 1 corresponds to direct
connection between a joint pair and 0 to non-direct. Each joint i is
related to a D-dimensional feature vector xi∈RD , thus X∈RD×N

denotes a matrix that aggregates the features of all graph nodes.



Fig. 2. 1st column: Sample frames from the AUTSL dataset [11]
(top) and the ITI GSL database [14] (bottom); 2nd column: 3D body
reconstruction via the “ExPose” regression model [22]; 3rd column:
3D human body reconstruction by the “PIXIE” estimator [23].

Following our previous work in [21], we adopt the 3D joint-
rotation parameterization of the human pose as graph feature rep-
resentations. Specifically, in [21] we used the “ExPose” 3D hu-
man reconstruction model [22] that relies on separate networks to
regress body, face, and hand parameters. The problem is that such
methods depend exclusively on the separate part predictions, where
in many cases hands and face predictions can be wrong (see also
Fig. 2 (2nd column)). To avoid this, here, we deploy a recently intro-
duced model, the so-called “PIXIE” [23], which infers 3D body pose
and shape parameterization using a moderator (see also Fig. 2 (3rd
column)). “PIXIE” first applies encoders to extract features from
cropped images of the body, face, and hands, while the moderator
is trained to predict the confidence score for each part. The con-
fidence score is exploited to compute the weighted average of the
body and part features. Then, the fused features are fed to separate
hand and face networks for parameter prediction. Hence, the final
prediction includes information from both full body and part images.
The “PIXIE” framework regresses parameters for the human shape
and pose, as well as the facial expressions. Thus, shape and expres-
sion are described by 250 coefficients in total, while the whole body
pose includes 55 joints with 6 degrees of freedom, i.e. 25 body pose
joints including head, jaw, and neck pose, as well as 15 joints per
each hand, yielding (6×55)-dimensional feature vectors.

2.2.2. ST-GCN Unit

The forward propagation rule of a spatial GCN layer given input Xin

is implemented as follows:

Xout = σ(WXinÂ) , (1)

where Xout ∈ RD′×N is the output feature vector, σ() denotes the
activation function, W∈RD′×D is the learnable weight matrix, and
Â is the normalized affinity matrix. Each ST-GCN unit involves a
spatial GCN that transforms and aggregates the node features and
their neighbors followed by a temporal convolution, which operates
in the temporal node neighborhood across adjacent frames.

One limitation of the spatial graph convolution function is that
all nodes in the graph share the same feature transformation W,
obstructing the modeling of the correlation between different body
joints that do not appertain to the same neighbor. To resolve this,
most recent works adopt the decoupled graph convolution, where an
independent learnable weight matrix is assigned to each node for
transformation. Despite the enhanced performance accomplished
via weight unsharing, the model size rises significantly. Here, we use
a variant of graph convolution, called modulated GCN [19], which
composes of two basic components: (i) weight modulation and (ii)
affinity modulation. In weight modulation, the graph convolution
function is supplemented by a learnable weight modulation vector
M∈RD′×N that is unique for each node i and is used to modulate
the shared weight matrix. Thus, (1) is transformed as follows:

Xout = σ((M� (WXin))Â) ,

with � denoting element-wise multiplication. In regular GCNs the
adjacent matrix A is usually predefined following the human skele-
ton structure, but SL involves motion patterns beyond the natural
body joint connections, as in Fig. 2 (1st column). The affinity mod-
ulation technique addresses this issue by adding a learnable mask
Q∈RN×N to matrix A, i.e. A′ = A + Q. To prevent overfitting,
we deploy symmetry regularization on affinity modulation, produc-
ing a symmetric affinity matrix as introduced in [19].

The GCN is followed by self-attention, involving a spatial, a
temporal, and a channel attention module, all three connected in cas-
cade to enhance the nodes context representation. Further, a tempo-
ral convolution is used in order to learn the relational patterns be-
tween consecutive frames. Since the dropout layer does not enhance
GCN performance, here, in order to avoid overfitting, a DropGraph
module [25] is added, where one node is dropped together with its
neighbor node set. In the introduced model, ten such ST-GCN units
are utilized, followed by a global average pooling layer on both spa-
tial and temporal domains before the fully-connected layer.

2.3. Multi-modal Fusion

Finally, we apply an ensemble module, where the posteriors returned
from the last fully-connected layers of the two different modalities
are appropriately fused. More precisely, we assign different weights
to each modality in accordance with their individual performance
and sum them up, producing the final probability scores.

3. EXPERIMENTAL FRAMEWORK

3.1. Datasets

As already mentioned, the performance of the proposed system is
evaluated on two publicly available isolated SLR corpora.

The AUTSL dataset [11] contains 36,302 RGB+D videos of 226
Turkish isolated signs that are performed by 43 signers and recorded
with 20 different backgrounds. Here, we employ the RGB-only
stream, available at 30 Hz and 512×512 resolution, and we adopt the
official SI data split, comprising 28,142 training videos (31 signers),
4,418 validation ones (5 signers), and 3,742 test videos (7 signers).

The ITI GSL database [14] contains RGB+D videos of 15 con-
tinuous Greek SL (GSL) dialogues performed by 7 different signers,
5 times each. It includes temporal gloss annotations, thus allowing
extraction of 40,826 isolated sign videos (with vocabulary size equal
to 310). Here, we use the RGB stream (30 Hz rate, 648×480 res-
olution), and perform SI SLR via 7-fold cross-validation (one test
signer per fold, with SLR models trained on the remaining 6).



Table 1. SLR accuracy (%) on both datasets using various 3D-CNNs
on the appearance stream alone.

CNN Models AUTSL ITI GSL
C3D [27] 81.95 85.66
I3D [14] 87.64 89.11
P3D [28] 90.57 92.14
R3D [29] 92.04 94.03
ResNet2+1D + ReLU [17] 93.26 95.89
ResNet2+1D + SiLU 93.85 95.98
ResNet2+1D (pretrained) + SiLU [8] 94.77 96.51
Ours 95.39 97.12

Table 2. SLR accuracy (%) on both datasets using ST-GCN variants
on the skeletal stream only.

ST-GCN Variations AUTSL ITI GSL
w/o Attention 93.88 94.85
w/o Modulated GCN 94.59 95.04
w/o DropGraph 95.12 95.79
w Decouple GCN 95.17 95.84
Ours 95.32 96.14

3.2. Implementation Details

For the 3D-CNN, we crop the upper body using the 3D joints gener-
ated by the MediaPipe framework [26] and resize it to 256×256. We
employ ResNet2+1D-18 as the underlying model, pretrained on the
Kinetics dataset. To further enhance SLR performance, we pretrain
our model on the Chinese SL dataset [10]. During finetuning, we
use the Adam optimizer with an initial learning rate of 0.0001 and
weight decay of 0.0001. We employ the cross-entropy loss function
with label smoothing, and set the mini-batch size to 16.

For graph construction, a 55-node skeleton graph is applied with
6-dimensional skeleton features corresponding to the rotation rep-
resentation dimension, which is estimated by “PIXIE”. The initial
learning rate is 0.1 and the weight decay is set to 0.001. Adam opti-
mization and batch size 16 are used.

Both modalities are trained for 200 epochs, saving the check-
point of each one with the lowest validation error. Then the poste-
riors are weighted and summed as: pfused = 1.0 papp + 0.9 pskel .
The system is implemented in PyTorch, and the experiments are per-
formed on an Nvidia RTX 3090 GPU.

3.3. Evaluation Results

Our isolated SLR model is evaluated on both datasets in terms of
sign recognition accuracy (%). First, in Table 1, we compare the
introduced deformable 3D-CNN model against state-of-the-art 3D-
CNN variations. Our model achieves 95.39% and 97.12% accuracies
on AUTSL and ITI GSL, respectively. In both cases it outperforms
all 3D-CNN alternatives considered. Next, we conduct ablations on
the proposed ST-GCN, depicted in Table 2. Clearly, the modulated
GCN and the attention mechanism seem to be the most important
contributors. Further, in Table 3 we evaluate the ST-GCN, when dif-
ferent features are employed for graph construction. Note that the
2D skeleton is extracted using the HRNet whole-body pose estima-
tor [30], while for the 3D skeleton regression the MediaPipe holistic
model [26] is employed. It is obvious that the joint-rotation param-
eterization derived via the “PIXIE” framework achieves the highest
recognition accuracies.

Finally, in Table 4 we evaluate model performance against the

Table 3. SLR accuracy (%) on both datasets using various streams
for the skeleton graph construction (skeletal stream alone).

Streams AUTSL ITI GSL
2D Joint-position 94.96 95.46
3D Joint-position 95.10 95.68
2D Joint-motion 92.54 93.11
3D Joint-motion 93.24 93.57
Joint-rotation (“ExPose”) 95.15 95.74
Joint-rotation (“PIXIE”) 95.32 96.14

Table 4. Ours vs. literature results on both datasets. Notation: ap-
pearance (A), hand appearance (HA), skeleton (S), optical flow (F).

Dataset Model Modalities Acc. (%)

AUTSL
VTN-PF [7] A + HA + S 92.92
MS-G3D [6] A + S 96.15
Ours A + S 96.67
SAM-SL [8] A + S + F 98.42

ITI GSL
I3D + BiLSTM [14] A 89.74
OpenHands [31] S 95.40
Ours A + S 97.85

literature, when both modalities are considered and their outputs are
fused. In the case of ITI GSL, our model achieves 97.85% SLR
accuracy, outperforming the state-of-the-art by 2.45% absolute, cor-
responding to a 53% relative error reduction. In the case of AUTSL,
our model yields 96.67% accuracy, trailing the state-of-the-art re-
sult (98.42%) of [8].1 Note, however, that multiple modalities were
considered in that work, including appearance, optical flow, skele-
ton, and skeletal features, at the expense of increased complexity
and computational cost. We can actually beat this result slightly,
reaching 98.45%, if we also incorporate optical flow in our ensem-
ble module (derived from the RAFT model [32]).

Revisiting the tabulated results, a comparison of the “Ours” en-
tries of Table 1 (appearance stream alone) to the corresponding en-
tries of Tables 2 or 3 (skeletal stream only) shows that the 3D-CNN
appearance module outperforms the skeletal ST-GCN one (AUTSL:
95.39% vs. 95.32%, ITI GSL: 97.12% vs. 96.14%). Nevertheless,
both modules perform well, and their fusion improves performance
further (Table 4, “Ours”), namely by 28% relative error reduction on
AUTSL and 25% on ITI GSL (over appearance only).

4. CONCLUSIONS

In this work, we focused on the challenging problem of SI isolated
SLR, investigating the contribution of fusing two different modali-
ties that operate on visual representations of appearance and human
pose to capture signing activity. In particular, we explored the inte-
gration of deformable convolutions in the ResNet2+1D network for
augmenting the convolution receptive field. Further, we introduced
a novel ST-GCN model relying on modulated GCNs, an attention
mechanism, and temporal convolutions to capture local and global
human skeletal joint dynamics. For graph construction we explored
the utility of 3D human joint-rotation parameterization, estimated by
the “PIXIE” approach. Finally, we assembled both modalities in the
proposed system, significantly outperforming the state-of-the-art on
the ITI GSL corpus and reaching competitive performance on the
popular AUTSL dataset.

1 Slightly better performance (98.53%) is reported in [8] when incorpo-
rating depth video to the system, but here we focus on RGB video only.
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