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Abstract. Cued Speech (CS) constitutes a non-vocal mode of communi-
cation that relies on lip movements in conjunction with hand positional
and gestural cues, in order to disambiguate phonetic information and
make it accessible to the speech and hearing impaired. In this study, we
address the automatic recognition of CS from videos, employing deep
learning techniques and extending our earlier work on this topic as fol-
lows: First, for visual feature extraction, in addition to hand positioning
embeddings and convolutional neural network-based appearance features
of the mouth region and signing hand, we consider structural information
of the hand and mouth articulators. Specifically, we utilize the OpenPose
framework to extract 2D lip keypoints and hand skeletal coordinates of
the signer, and we also infer 3D hand skeletal coordinates from the latter
exploiting own earlier work on 2D-to-3D hand-pose regression. Second,
we modify the sequence learning model, by considering a time-depth sep-
arable (TDS) convolution block structure that encodes the fused visual
features, in conjunction with a decoder that is based on connectionist
temporal classification for phonetic sequence prediction. We investigate
the contribution of the above to CS recognition, evaluating our model
on a French and a British English CS video dataset, and we report sig-
nificant gains over the state-of-the-art on both sets.

Keywords: Cued speech recognition · convolutional neural networks
· time-depth separable convolutional encoder · connectionist temporal
classification · OpenPose · skeleton · 2D-to-3D hand-pose regression.

1 Introduction

Speechreading is essential to speech perception for the hearing impaired, al-
beit inaccurate due to the confusability of visual speech patterns, as multiple
phonemes share identical mouthing (visemes). To address this problem, Cor-
nett [6] introduced the cued speech (CS) communication system, complementing
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Fig. 1. French CS phonetic encoding system (figure adapted from [1])

mouthing patterns with hand positional and gestural cues. In CS, the simul-
taneous articulation of mouthing patterns, hand-shapes, and hand positioning
relative to the mouth provides a complete visual representation of the spoken
language phonological system that is valuable to the speech and hearing im-
paired. Not surprisingly, CS has been adopted in many languages and dialects.
For instance, as also shown in Fig. 1, French CS comprises 5 hand positions that
encode vowels, as well as 8 hand-shapes that encode consonants in conjunction
with 8 lip contour patterns, yielding 34 phonemes [15]. Similarly, CS for British
English encapsulates 4 hand positions for monophthongs (12 monophthongs) and
4 hand slips for diphthongs (8 diphthongs) encoding, as well as 8 hand-shapes
for the encoding of 24 consonants in conjunction with lip patterns (44 phonemes
in total). Example video frames of CS articulation in French and British English
are shown in Fig. 2, obtained from corresponding corpora [21, 22].

Since CS information is primarily delivered by mouthing and gestural pat-
terns, its automatic recognition from video data necessitates the integration of
lipreading [28] and sign language recognition techniques [2, 29]. The topic has at-
tracted recent interest in the literature, facilitated by the availability of CS data
resources [19, 21, 22]. For example, on the visual front-end side of automatic CS
recognition systems, early approaches rely on artificial markings for detecting
the articulators of interest [15, 16], while more recent works utilize deep learning
for lip tracking and hand region segmentation [21, 25], possibly assisted by a
traditional image pre-processing pipeline [25]. This process is typically followed
by appearance-based visual feature extraction, most often by means of convolu-
tional neural networks (CNNs) [21, 23, 25]. On the back-end side, most phonetic
sequence modeling approaches employ hidden Markov models [1, 15, 16, 23] or
more recently a deep learning-based attentional encoder-decoder [25]. In addi-
tion to the above, an important CS aspect is the inherent asynchrony between
hand-shape and mouthing articulation. Indeed, as shown in [1], the former pre-
cedes the latter by roughly one syllable. The issue is also considered in [20, 22,
23].
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Fig. 2. Example video frames from the French CS dataset [21] (upper row) and the
British English CS database [22] (lower row) that are used in this paper, showing
various combinations of hand shapes, mouthing patterns, and hand positions.

In this paper, we address the problem of automatic CS recognition from
upper-body videos with no artificial markings, by significantly extending our
earlier work on this topic [25]. That CS recognition system commenced with a
hybrid approach for mouth and hand region tracking (based on a traditional im-
age pre-processing pipeline and 2D-CNNs), it then extracted appearance features
of these regions by employing 3D-CNNs, as well as hand positional embeddings
relative to the mouth based on 2D-CNNs, and finally concatenated these three
visual feature streams and fed them to a deep attentional encoder-decoder [25].

Here, we modify the aforementioned system in multiple ways: We utilize the
OpenPose framework [30] for skeletal data acquisition of the CS interpreter,
and, by extension, for hand and mouth region segmentation. We then consider
additional feature streams that capture structural information of the articulators
of interest in order to investigate their benefit to CS recognition. Specifically, we
first consider the 2D lip points and 2D hand skeletal coordinates of the signer,
provided by OpenPose. Further, we infer 3D hand skeletal coordinates from the
2D ones, by exploiting a powerful architecture [24] that we recently used for
2D-to-3D hand-pose regression in sign language recognition [26], thus enriching
knowledge about the trajectory of hand movement by enabling its observation
in 3D. Finally, we modify the sequence learning model, by considering its time-
depth separable (TDS) convolution block structure [11, 25] used to encode the
fused visual features, in conjunction with a decoder that is based on connectionist
temporal classification (CTC) [10] for phonetic sequence prediction. Note that
our approach does not rely on explicit synchronization of the hand and mouth
feature streams prior to their fusion, instead expecting our model to learn such
implicitly.
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Fig. 3. Architecture of the introduced CS recognition system that generates phonemes
from CS videos, following the detection of hand and mouth articulators (left), the
extraction and fusion of various feature streams (middle), and sequence learning for
phoneme prediction (right).

We evaluate our proposed system on two publicly available CS datasets in
French [21] and British English [22], each containing a single subject (see also
Fig. 2). We compare our approach against alternative sequence learning models
and investigate the combination of various of the aforementioned visual feature
streams for CS recognition. Our proposed system turns out superior, significantly
exceeding the state-of-the-art on the two datasets that was reported in our earlier
work [25]. In particular, we observe a significant absolute phoneme error rate
(PER) reduction of 8.87% (from 29.12% to 20.25%) in the French CS corpus
and 3.67% (from 36.25% to 32.58%) in the British English CS set.

2 The CS Recognition System

We next present our proposed system for CS recognition from videos. The sys-
tem is schematically depicted in Fig. 3 and contains multiple components: Visual
detection of the articulators, visual feature extraction of multiple streams relat-
ing to hand and mouth articulation, their fusion, and, finally, sequence learning
for phoneme prediction. All system modules are detailed next.

2.1 Hand and mouth detection

Since CS relies on manual articulation together with mouthing patterns, it is
clear that a successful CS recognition system should be able to accurately track
both articulators in space and time. For this purpose, we utilize the OpenPose
framework [30], which relies on deep convolutional pose models to provide a
detailed representation of the human body in the form of multiple 2D keypoints.
In particular, OpenPose can estimate up to 137 “human skeleton joints” in the
2D image pixel coordinate system, yielding 70 facial, 25 body-pose, and 42 hand-
pose (21 for each hand) keypoints, as also shown in Fig. 4(a),(d).

We further employ the hand and mouth keypoints to generate respective
hand and mouth regions-of-interest (ROIs), as also depicted in Fig. 4(c),(f).
We then feed these ROIs (after appropriate rescaling) to CNNs for appearance
feature generation, as discussed in Section 2.4. Note that occasionally OpenPose
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Examples of articulator detection and keypoint feature extraction on the French
CS dataset (upper row) and the British English CS corpus (lower row). Shown, column-
wise, left-to-right: (a,d) 2D “skeletal” joints returned by OpenPose; (b,e): inferred 3D
keypoints of the signing hand; (c,f): bounding boxes of the signing hand and mouth
regions-of-interest derived based on the corresponding OpenPose 2D keypoints.

fails, most likely due to the fact that only part of the signer’s body is visible
in the datasets considered here (see also Fig. 2). In such cases, we revert to the
detection, tracking, and ROI extraction scheme of our earlier work [25].

2.2 2D hand and mouth keypoint features

Our CS system exploits 41 keypoints returned by OpenPose, namely 21 skeleton
joints of the signing hand (this happens to be the right hand in the two datasets),
and 20 facial keypoints associated with the lip region, all provided as 2D coordi-
nates. This yields 42-dimensional (dim) features for the hand and 40-dim features
for the mouth (82-dim in total). These features are normalized before being fed
to the fusion module, to counter possible variations in the subject and camera
relative positions. Specifically, the 2D points of interest are converted to a local
coordinate system with the wrist keypoint and the upper-middle lip keypoint
being the respective origins. In addition, all keypoints are further normalized
based on the distance between the left and right shoulder joints. Note that in
case OpenPose fails to return the desired keypoints, the missing feature streams
are filled by the previous existing ones.
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Fig. 5. Model architecture for 3D hand skeleton generation from corresponding 2D
information (figure adapted from [26]).

2.3 3D hand keypoint features

In addition to 2D hand keypoint features, we investigate the benefit of exploiting
more detailed hand skeletal information by inferring the 3D hand skeleton, thus
enriching the system with hand trajectory information in 3D. Our approach
extracts the desired 3D hand joints by regressing the 2D hand joint locations
to the 3D space [26]. Specifically, after extracting the 2D human skeleton of the
hand via OpenPose, we feed its 2D hand coordinates to the hand-pose regression
model, producing a series of hand keypoints in the 3D space. We zero-center both
2D and 3D poses around the wrist joint, so as to ensure translation invariance.
The regression model, depicted in Fig. 5, is a deep neural network with two layers,
each containing two basic blocks that share a residual connection. The network
basic building block is a linear layer, followed by batch normalization, a rectified
linear unit (ReLU) activation, and dropout. Incorporating batch normalization
and dropout increases model robustness to noisy detections, whereas residual
connections improve model generalization.

The model yields 21 3D joints for the signing hand, thus producing 63-dim
feature vectors (see also Fig. 4(b),(e)). Note that prior to their fusion with other
feature streams, these are normalized based on the distance between the hand
shoulder and elbow joints, and regarding the wrist as the system origin.

2.4 Hand and mouth appearance features

In addition to the aforementioned features, we extract spatio-temporal appear-
ance features from the ROIs of the signing hand and mouth, as in our earlier
work [25]. Specifically, we resize each ROI to 96 × 96 pixels and apply a 3D-
CNN feature learner on three temporally adjacent ROIs of the signing hand
or mouth. For this purpose, we utilize the 3D ResNet-34 network [12], which
contains 3D convolutions (3 × 3 × 3) and 3D pooling and is pre-trained on the
Kinetics dataset [3], obtaining feature maps from the output of its global average
pooling layer. This process yields 512-dim feature vectors for each of the hand
and mouth ROIs.
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Fig. 6. Example frames of the French CS (left) and British English CS (right) datasets,
showing the location-based area division of possible signing hand positions relative to
the mouth, which we use to obtain hand positional embeddings in Section 2.5.

2.5 Hand position detection and representation

As discussed in Section 1, hand positioning relative to the mouth plays a crucial
role in CS. For this purpose, we use the 2D coordinates of the upper skeletal
joint of the signing hand to detect the hand relative position, and then we pass
this information through a five-layer 2D-CNN with three fully-connected layers
to extract 64-dim hand positional embeddings. Specifically, the CNN is a multi-
class model, with each class corresponding to the several possible location areas
of the signing hand relative to the mouth. There are five such classes (location
areas) for French CS and four for British English CS, as also depicted in Fig. 6.

2.6 Feature fusion

The aforementioned feature streams are fused by simple vector concatenation,
producing a 1233-dimensional feature vector for each video frame: 42 for 2D
hand skeletal features, 40 for the mouth keypoints, 63 for the 3D hand skeletal
stream, 512 for hand appearance, 512 for mouth appearance, and 64 for hand
positional embeddings. These fused vectors are then passed to the sequence
learning module for predicting the phonetic sequence of the CS video.

2.7 Sequence learning

Viewing phoneme recognition in continuous CS videos as a sequence-to-sequence
prediction task, we address it by employing a TDS convolutional encoder [11, 25],
followed by CTC decoding [10]. Specifically, the resulting latent-representation
vectors generated in Section 2.6 are modeled by a TDS convolutional encoder,
which comprises two blocks: a 2D convolution over time, followed by a fully-
connected block. In particular, the first sub-block involves a 2D convolutional
layer complemented with a ReLU non-linearity and a normalization layer, while
the fully-connected layer block consists of two convolutions with ReLU non-
linearity in between and a normalization layer. The TDS convolutional encoder
output is later subjected to linear projection followed by a log-softmax, yielding
a probability distribution over all the possible phoneme labels prior to computing
the CTC loss.
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3 Experimental Evaluation

3.1 Datasets and experimental framework

As already mentioned, our experiments are conducted on two single-subject, con-
tinuous CS corpora, namely the French CS dataset [21] and the British English
CS database [22]. All experiments are carried out using ten-fold cross-validation,
with 80% of each fold used for training, 10% for validation, and 10% for testing.

In more detail, the French CS dataset contains 238 French sentences, each
repeated twice, yielding a 476-sentence set with 11,770 phonemes in total be-
longing to 34 classes, and it is performed by a professional CS interpreter with
no hearing disorders. The collected RGB video data include the upper body of
the subject and are available at 50 frames per second (fps) and a 720×576-pixel
resolution. On the other hand, the British English CS dataset is significantly
smaller, containing only 97 sentences (with 44 phonetic classes) and is recorded
by a professional CS speaker with no hearing impairment. The collected RGB
video data include the upper body of the subject and are available at 25 fps and
a 720×1280-pixel resolution.

3.2 Implementation details

We implement our system in the PyTorch framework [27] and carry out its
training using GPU acceleration.

For 3D hand skeleton network (Section 2.3) training, we use the Rendered
HandPose Dataset [33], a large-scale 3D hand pose dataset based on synthetic
hand models [33]. This dataset utilizes 3D human models with corresponding
animations from Mixamo 2 [9], while the software Blender 3 [5] is used for
image rendering. It features 20 characters performing 39 actions, and different
camera locations are selected randomly for each frame. The dataset provides
41,258 images for training and 2,728 images for evaluation with a resolution of
320×320 pixels. We train the network for 150 epochs using Adam optimizer [18],
a batch size of 64, a starting learning rate of 0.001, and exponential decay. The
weights of the linear layers are set by Kaiming He initialization [13].

For hand and mouth appearance feature extraction (Section 2.4), we apply
a 3D ResNet-34 [12], trained by stochastic gradient descent with momentum at
0.9 with an initial learning rate of 0.1 decreased by a factor of 0.001. We perform
500 complete passes over the data with a mini-batch size of 256 images.

For the sequence learning model of Section 2.7, we employ a TDS convolu-
tional encoder with two 3-channel, three 5-channel, and six 7-channel TDS blocks
with kernel sizes 3×1. Additionally, we compare our approach to a number of
alternative sequence models, differing in encoder type. Specifically, we evaluate
our system using a one-layer long short-term memory (LSTM) [17] encoder and
a one-layer gated recurrent unit (GRU) [4] encoder, both with 256 hidden units,
as well as a Transformer [32] encoder with hidden dimensionality equal to 512.

We conduct the training of all sequence learning models by the Adam opti-
mizer [18] with a learning rate of 0.003 decayed by a factor of 0.85 and use a
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Table 1. Phoneme error rate (%) on the French and British English CS datasets, em-
ploying various feature stream combinations in conjunction with the sequence learning
model of Section 2.7.

Feature Streams CS Datasets

Hand Mouth Positional 2D Hand 2D Mouth 3D Hand
3D-CNN 3D-CNN 2D-CNN Skeleton Keypoints Skeleton French English
(512-dim) (512-dim) (64-dim) (42-dim) (40-dim) (63-dim)

X X 38.50 44.11

X X X 25.64 35.13

X X X 38.87 47.10

X X X 37.54 45.89

X X X X 25.58 33.68

X X X X 24.93 33.29

X X X X 25.06 33.50

X X X X X 22.17 32.91

X X X X X X 20.25 32.58

batch size of 128. We employ 0.1 dropout and 0.1 label smoothing [31]. During
decoding, we apply the beam search strategy of [8] with beam width equal to 3.

3.3 Results

The performance of our proposed approach for continuous CS recognition from
videos is reported in Table 1. There, the phoneme error rate (PER) (%) obtained
by the introduced sequence learning model relying on the TDS convolutional en-
coder and CTC decoding and operating on various feature stream combinations
is shown on both CS corpora. It is apparent that the best results are achieved
when all feature streams are concatenated, showcasing the benefit of incorporat-
ing multiple feature representations into the CS recognition system.

Comparing the best results of the table to our earlier work [25] that represents
the state-of-the-art in the field, we obtain significant improvements on both
datasets: An 8.87% absolute PER reduction (from 29.12% to 20.25%) for French
CS and a 3.67% one (from 36.25% to 32.58%) on British English CS. Such
improvements can be attributed to the redesign of both visual feature extraction
and sequence learning modules of our system. Indeed, from Table 1 it is obvious
that the earlier used appearance and hand positional features alone lag behind
the much richer feature representation proposed here. Further, the introduced
sequence learning model improves over our earlier model that was based on the
TDS convolutional encoder and attentional convolutional decoder, achieving a
PER reduction of 3.48% (from 29.12% to 25.64%) for French CS and 1.12% (from
36.25% to 35.13%) for British English CS, revealing the power of CTC decoding
in CS recognition (note that these results refer to the combination of appearance
and hand positional features, since only these were considered in [25]).
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Fig. 7. Comparative evaluation of various sequence learning models on both datasets
in terms of PER (%) using all feature streams fused synchronously or with a fixed
delay (asynchronously).

Concerning the various feature combinations considered in Table 1, we ob-
serve that discarding hand positional embeddings results in the worst PERs on
both datasets, demonstrating their importance to CS recognition. Notably, sub-
stituting hand and mouth appearance features with the respective skeletal data
yields significantly higher PERs on both datasets than their combination. This
demonstrates that skeletal data constitute descriptive representations conveying
valuable information that can complement the corresponding appearance fea-
tures, and thus their combined use is essential. Moreover, the 3D hand skeleton
seems to be a robust representation, since it performs better than the correspond-
ing 2D hand skeleton when added to the fusion module, and its incorporation
on top of all other streams boosts system performance. It can also be seen that
the 2D mouth keypoints representation performs well as additional mouth ar-
ticulatory information, reducing PER on both datasets. This is primarily due to
the fact that facial keypoints are more robustly detected by OpenPose than the
hand joints that are often occluded. Finally, it can also be observed that there
is a significant difference in PERs between the two datasets, most likely due to
the limited size of the British English set.

Next, in Fig. 7, we investigate the performance of the various sequence learn-
ing models described in Section 3.2 on both CS datasets, when employing all
feature streams (1233-dim vectors). Due to the asynchrony between hand and
mouth articulation with the former preceding by approximately one syllable [1],
we consider two feature fusion schemes: one that concatenates all features dis-
regarding this asynchrony (as we do in our proposed system), referred to as
“synchronous articulation” in Fig. 7, and another one, where the hand-related
feature streams are artificially delayed by a fixed amount in time in the hope of
better matching the mouth-related streams (referred to in the figure as “asyn-
chronous articulation”). Specifically, we use a delay of 12 frames for French CS
(as proposed in [1]) and 15 frames for the British English set. As it can be ob-
served from Fig. 7, the proposed sequence learning model (TDS convolutional
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encoder and CTC decoding) yields the best results on both sets when features
are directly concatenated with no enforced time shift. It can also be seen that the
worst results for both datasets are obtained by the Transformer encoder-based
model, while the LSTM encoder gives significantly better results compared to
the respective GRU model, but still lagging our model. Further, enforcing a time
delay of the hand features yields consistently worse results across all models com-
pared to synchronous fusion.

Lastly, we investigated the performance of our model under a number of
variations in the appearance feature learner and the number of TDS blocks in
the TDS convolutional encoder. Specifically, we replaced the 3D-CNN with a 2D-
CNN (ResNet-18 [14]) for appearance feature extraction of the hand and mouth
ROIs. That model uses 3× 3 convolutional kernels, downsampling with stride 2,
and is pretrained on the ImageNet corpus [7]. This modification degraded PER
significantly, by over 2% absolute (from 20.25% to 22.74% PER) for French
CS and by about 3.5% (from 32.58% to 36.12% PER) for British English CS.
Regarding the TDS convolutional encoder, we increased the number of channels
keeping the same receptive field from (3, 5, 7) to (10, 12, 14), (10, 14, 18), and
(10, 10, 14), but in all cases we ended up with worse PERs on both corpora.

4 Conclusions

In this paper, we investigated the incorporation of multiple representation streams
into a state-of-the-art deep-learning based sequence learning model for CS recog-
nition from upper-body videos. In particular, our CS recognition system relied on
spatio-temporal feature extraction and fusion learned via a TDS convolutional
encoder, followed by CTC decoding without the use of any explicit stream syn-
chronization. We highlighted how the inclusion of skeletal data to the feature
fusion module benefits system performance. Notably, inferred 3D hand skeletal
data boosted CS recognition when added on top of all other spatio-temporal
streams. The conducted evaluation on two CS datasets demonstrated that the
proposed model outperformed other sequence learning architectures, surpassing
the state-of-the-art in the field.
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