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Abstract—Cued Speech constitutes a sign-based communica-
tion variant for the speech and hearing impaired, which involves
visual information from lip movements combined with hand
positional and gestural cues. In this paper, we consider its
automatic recognition in videos, introducing a deep sequence
learning approach that consists of two separately trained compo-
nents: an image learner based on convolutional neural networks
(CNNs) and a fully convolutional encoder-decoder. Specifically,
handshape and lip visual features extracted from a 3D-CNN
feature learner, as well as hand position embeddings obtained by
a 2D-CNN, are concatenated and fed to a time-depth separable
(TDS) block structure, followed by a multi-step attention-based
convolutional decoder for phoneme prediction. To our knowledge,
this is the first work where recognition of cued speech is
addressed using a common modeling approach based entirely
on CNNs. The introduced model is evaluated on a French and
a British English cued speech dataset in terms of phoneme
error rate, and it is shown to significantly outperform alternative
modeling approaches.

Index Terms—Cued speech, 3D-CNN, TDS encoder, attention-
based convolutional decoder

I. INTRODUCTION

Speechreading constitutes a fundamental modality of speech
perception among orally educated hearing-impaired people.
However, the ambiguity of visual speech patterns renders
speechreading inadequate in the absence of semantic content.
For that reason, in 1967, Cornett [1] introduced Cued Speech
(CS) by combining hand positional and gestural cues with
mouthing patterns (see also Fig. 1). Thus, automatic recog-
nition of CS necessitates the combined use of lipreading and
sign language techniques [2], [3].

Lately, there has been increased interest in automatic CS
recognition, due to the availability of publicly available cor-
pora [4], [5] (see also Fig. 2). Early research has relied on
artificial markings for addressing the problem of lip and hand
segmentation [6], [7]. More recently [8], a novel scheme was
proposed that abstains from the use of any visual artifices, em-
ploying instead the Kanade-Lucas-Tomasi lip feature tracker
and a Gaussian mixture model (GMM)-based foreground
extraction for hand region detection. Regarding speech mod-
eling, the most dominant approaches map sequences of hand-
crafted features to phonemes using hidden Markov models
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(HMMs) [6], [7]. More recently [8], [9], convolutional neural
networks (CNNs) are employed to extract visual features
from lip and hand regions, feeding them to an HMM-GMM
classifier. A critical issue in CS is the asynchrony between
hand and lip articulations, with most proposed approaches
relying on audio-based segmentation [10]. For that purpose,
a temporal segmentation scheme is used in [4], [5] to estimate
the average hand preceding time for vowels and consonants,
whereas in [9], a novel synchronization approach for multi-
modal fusion is employed to align hand and lip features.

In this study, we focus on continuous CS recognition in
videos with no artificial markings, regarding the CS recogni-
tion problem as an image-to-text translation task. Our approach
contains three distinct pillars: feature extraction for the streams
of interest (handshapes, lips, and hand position), multi-stream
feature concatenation, and recognition. Thus, we introduce
a visual multi-modal system based on a fully convolutional
sequence model comprised of two main components that
are trained separately: CNN-based stream feature learners
and a fully convolutional encoder-decoder. The latter part
composes of a time-depth separable (TDS) block structure [12]
encoder, accompanied by a multi-step attention-based convo-
lutional decoder [13], [14] with gated linear units [15] over
the convolution output that are trained jointly for sequence
prediction (see also Fig. 3). The model is complemented
with an input feeding scheme, through which prior attentional
vectors are concatenated with inputs at the following time step.
Additionally, our approach abstains from using any explicit
stream synchronization, applying instead direct fusion to the
three feature flows, letting the model to learn such implicitly.

To the best of our knowledge, this paper constitutes the first
attempt to combine a fully convolutional TDS encoder with a

Fig. 1. French Cued Speech, showing hand positioning and shape (figure
adapted from [11]).
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Fig. 2. Example frames marked with rectangular boxes enclosing the detected
handshape, as well as the mouth region from (a) the French cued speech
dataset [8] and (b) the British English cued speech dataset [5].

multi-step attention-based convolutional decoder for automatic
CS recognition. We evaluate the introduced approach on the
French [8] and British English [5] CS datasets (see also Fig. 2).
We compare our approach experimentally to four alternative
sequence models under two additional feature learners, achiev-
ing significant absolute phoneme accuracy improvement of
9.38% in the French CS recognition task compared to previous
approaches [8]. Notably also, to our knowledge, this represents
the first attempt to address British English CS recognition.

The rest of the paper is organized as follows: Section II
describes the basic pillars of the proposed model; Section III
outlines the implementation details and the evaluated systems;
Section IV presents the datasets and experiments; and Sec-
tion V summarizes the paper.

II. MODEL

We consider a source sequence x = (x1, x2, ..., xm) ex-
pressed in m raw image frames that is processed generating
a sequence of image features z = (z1, z2, ..., zm) and passes
through an encoder-decoder module generating the predicted
sequence y = (y1, y2, .., yn). As already discussed, the general
architecture of the proposed system comprises two main
phases (see Fig. 3): (i) a CNN-based image feature extractor,
and (ii) a convolutional TDS encoder attended by an attention-
based convolutional decoder for prediction, all detailed next.

A. 3D-CNN based feature learner

CNNs contain a series of convolutional layers comple-
mented with non-linearity and pooling, followed by fully con-
nected layers and an output layer. Here, we apply a pretrained
3D ResNet-34 [16] trained on the Kinetics dataset [17], to
extract spatio-temporal features from a video clip containing
adjacent frames (3 frames). The main difference between 3D
ResNets and original ResNets is that the former employ 3D
convolutions (3× 3× 3) and 3D pooling instead of 2D ones.
All image frames are resized to 96× 96 pixels, before being
converted to clips and fed into the 3D ResNet-34 network.
The network outputs 512-dimensional feature maps, by taking
the output of the global average pooling layer.

B. Attention-based encoder-decoder

1) Time-depth separable convolutional encoder: Inspired
by [12], for temporal modeling a TDS convolution block
encoder is used. Such consists of a 2D convolution over
time, followed by a fully-connected block. More precisely,
the model initiates with a 2D convolutional layer, which is

Fig. 3. Overview of the proposed model comprising hand- and lip-region
extraction, as well as the hand position; a 3D-CNN/2D-CNN image feature
learner (circled C denotes concatenation); a TDS block structure-based en-
coder; and an attention-based convolutional decoder for phoneme prediction.

fed with an input of size T ×w×p, with T being the number
of time-steps, w the input width, and p the number of channels.
The network uses k×1 convolutional kernels (kp2 parameters)
and downsampling with stride 2. The convolutional layer,
which is complemented with a rectified linear unit (ReLU)
non-linearity, is followed by a fully-connected layer composed
of a sequence of two 1 × 1 convolutions with a stride of
2 complemented with ReLU non-linearity. The output of the
convolutional block, before being fed to the fully-connected
layer, is transformed into a shape of T × 1× wp.

To smoothly optimize and leverage the performance of
the model, residual connections [18] and layer normalization
over all dimensions are added after the convolutional and the
fully-connected block. Since the output of each TDS layer
is compressed in time, we increase the number of output
channels of each convolutional layer by multiplying it with
a factor equal to the input feature dimension divided by
the number of channels of input features. Finally, dropout is
applied after the ReLU non-linearity in each layer.

2) Multi-step attention-based convolutional decoder: As
in [13], [14], each decoder layer composed of one-dimensional
convolution is followed by a gated linear unit (GLU) [15]
that operates as a gating tool for dealing with the convo-
lution output H = [AB] ∈ R2D. For that purpose we use
u = A⊗ σ(B), where u ∈ RD expresses which of A outputs
associate with the current target element, and ⊗ denotes point-
wise multiplication. For simplicity, we denote that the l-th
decoder layer generates dl = (dl1, d

l
2, ..., d

l
n) hidden states.

Since for a one-layer decoder of kernel width k each
generated hidden state d1j is related to k inputs, stacking
multiple layers on top of each other results in states that are
related to more inputs than previously. In more detail, each
convolutional kernel K ∈ R2D×kD is fed with k concatenated
input elements embedded in D dimensions (Z ∈ Rk×D)
returning H ∈ R2D with twice dimensionality than input
elements, since layers process k outputs of the previous ones.

Additionally, the multi-step attention mechanism [13], [19]
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Fig. 4. Example of the preprocessing pipeline: (a) Input image marked with
a rectangular box enclosing the detected face and nose region; (b) segmented
skin region; (c) resulting image with the yellow rectangular box illustrating
the moving object (hand) and the red box the lip region; (d) hand position
detection through mouth and face location-based area division (white lines)
and upper hand point coordinates deduction (red circle).

is an integral part of a fully convolutional decoder. More pre-
cisely, the attention weights alij , which are applied to hi during
decoding, are computed using a score function normalized by
softmax. For that purpose, a variety of alignment functions
have been proposed in the literature [20], [21]. Here, we apply
a dot alignment function on the corresponding decoder layer
dlj and encoder state hi. The context vectors clj are computed
as the weighted sum of each encoder hidden state:

clj =

m∑
i=1

alijhi.

Subsequently, the context vectors are fed into the next decoder
layer providing specific information for attention calculation.
After last layer’s context vector clj computation and concate-
nation with the decoder hidden state, the attentional vector d̃t
is generated:

d̃lt = tanh(Wc[c
l
t; d

l
t]).

Finally, we complement the model with an input feeding
mechanism [21], where we concatenate the attentional vectors
d̃lt with each layer decoder inputs at the following time step,
converting the model to a fully connected deep neural network
on both directions that deploys previous alignment information
during the estimation of the new ones.

III. IMPLEMENTATION DETAILS AND SYSTEMS

A. Preprocessing pipeline for CS recognition

Our system is complemented with an image preprocessing
pipeline, inspired by own prior work [22], for hand and lip
region extraction, as well as hand position localization. In
addition, the system is equipped with stream fusion of the
three visual inputs (handshape, lips, and hand position).

1) Hand and lip detection: The primary step of the pro-
posed system constitutes an image processing pipeline for
hand and lip region extraction (see Fig. 4(a)-(c)). The pipeline
initiates with nose area detection, which captures uniquely
the skin color range, through the use of the Viola-Jones
algorithm [23]. Subsequently for hand detection, the skin-tone
information drives skin region segmentation in the YCbCr
color space [24]. To treat overlap between the hand and face
area, after skin-like pixel segmentation and since hands are
moving objects in the field-of-view, we perform hand tracking
by means of motion-based Kalman filtering [25]. In parallel,
the lip area is extracted in each image frame through a cascade
object detector using the Viola-Jones algorithm [23].

2) Hand position detection and representation: The pre-
processing phase is complemented with hand configuration
classification into 5 different positions (side, mouth, chin,
cheek, throat) for French CS and 4 positions (side, mouth,
chin, throat) for the British English CS case. Specifically, we
perform hand edge detection through the Sobel operator [26],
extracting the coordinates of the upper point of the hand
region. Then, the input image is divided into several regions in
accordance with the lips position, and a label is assigned based
on the hand position (see Fig. 4(d)). Hand relative positions
are learned via a five-layer 2D-CNN with three fully-connected
layers resulting in a 64-dimensional feature vector.

3) Stream fusion: The features of each visual stream (hand-
shape and lips) extracted from the 3D-CNN feature learner, as
well as the position embeddings are concatenated generating
a 1,088-dimensional feature vector (512 for handshape repre-
sentation, 512 for the lip region, and 64 for the hand position
embeddings) and subsequently fed to the proposed attention-
based encoder-decoder for phoneme sequence prediction.

B. System details

We compare our approach experimentally to four alternative
sequence models under two additional feature learners exam-
ining the effect of our architecture on CS recognition. All
models were implemented in PyTorch [27], and their training
was carried out using GPU acceleration.

1) Evaluated feature learners: For image feature extraction
in our model we employ a 3D ResNet-34 with 3-frame
video clips, trained through stochastic gradient descent with
momentum at 0.9 with an initial learning rate of 0.1 (decayed
by a factor of 0.001), performing 500 complete passes over
the data. A mini-batch size of 256 images was employed.

Additionally, for comparison we use a Vanilla auto-encoder
(AE) image feature learner based on MLP consisting of two
hidden layers with fixed dimensionality at 100 on the encoder
and the decoder, respectively. For weight initialization we
performed the Xavier process [28]. AE network training was
conducted using scaled conjugate gradient descent (SCGD)
with an initial learning rate of 0.004 decreased by a factor of
0.8 and a mini-batch size of 64 images.

Moreover, we employ a 2D-CNN image feature learner
based on a pretrained ResNet-18 network [29] (trained on the
ImageNet database [30]) in order to extract feature maps by
taking the output of the global average pooling layer. The
network uses 3 × 3 convolutional kernels and downsampling
with stride 2. The 2D-CNN transforms the image sequence
into a sequence of 512-dimensional feature vectors employing
the mean squared error loss function.

2) Sequence modeling schemes: The following are used:
TDS enc & attention-based CNN dec (TDS/CNN): The TDS

encoder has one 10-channel and one 128-channel TDS blocks
with kernel sizes 3 × 1 and 5 × 1, respectively. For the
convolutional attention-based decoder, the size of hidden states
is fixed at 128. The multi-step attention-based convolutional
decoder comprises of a 6-layer decoder with kernel width 5.
Training is carried out employing the Adagrad optimizer [31]
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TABLE I
PERFORMANCE COMPARISON IN PER (%) OF THE EVALUATED SEQUENCE MODELS UNDER ALL FEATURE LEARNERS ON BOTH DATASETS.

Dataset French CS British English CS
Features Models TDS/CNN TDS/GRU ARNN ACNN Transformer TDS/CNN TDS/GRU ARNN ACNN Transformer

AE 42.03 42.51 50.06 44.94 54.17 52.81 59.21 61.04 56.07 67.22
2D-CNN 40.16 45.38 45.04 44.55 47.47 45.31 50.11 52.10 47.29 59.11
3D-CNN 29.12 31.28 33.35 31.20 37.47 36.25 37.09 43.57 36.84 39.77

with an initial learning rate of 0.3, decreased by a factor of 0.3.
Dropout is added at a rate of 0.4. The beam search strategy
[32] with beam width of 2 in decoding is applied. Finally, the
mini-batch size is fixed to 128.

TDS enc & attention-based GRU dec (TDS/GRU): The
model comprises of a 2-layer GRU decoder with 128 hidden
units. Training is conducted employing the Adam optimizer
[33] with an initial learning rate of 0.001 decreased by a factor
of 3.0. Attention score calculation is carried out by the dot
alignment function [21].

Attentional RNN enc-dec (ARNN): The model constitutes a
3-layer LSTM [34] encoder-decoder with 128 hidden units.
Training is conducted employing the Adam optimizer [33]
with an initial learning rate of 0.015 decreased by a factor
of 2.0. Attention score calculation is carried out by the dot
alignment function [21].

Attentional CNN enc-dec (ACNN): The model constitutes a
6-layer CNN encoder-decoder with kernel width 5 and 128
hidden units. Training is conducted employing the Adagrad
optimizer [31] with an initial learning rate of 0.3 decreased by
a factor of 0.3. Attention score calculation is carried out by the
dot alignment function [21] and the model is complemented
with an input feeding scheme.

Transformer enc-dec (Transformer): Sequences are fed to a
6-layer transformer with 8 heads for transformer self-attention
and 2048-dimension hidden transformer feed-forward. Train-
ing is conducted employing the Adam optimizer [33] with
an initial learning rate of 0.001 decreased by a factor of 2.0.
Parameter initialization follows the Xavier process [28].

IV. EXPERIMENTS

A. Datasets and experimental framework

The French CS dataset [8] contains 2 repetitions of 238
French sentences expressed by a professional CS interpreter
consisting of about 11,770 phonemes totally. RGB video
images including the interpreter’s upper body are available
at 50 fps and 720×576 pixel resolution. Note that French CS
encapsulates 8 lip patterns, 8 handshapes, and 5 different hand
positions, encoding a set of 34 phonetic classes, namely 14
vowels and 20 consonants.

The British English CS dataset [5] is recorded by a
professional CS interpreter and contains 97 British English
sentences. Color video images of the interpreter’s upper body
are available at 25 fps, with a spatial resolution of 720×1280.
Note that British English CS encapsulates 4 hand positions for
encoding the 12 monophthongs and 4 hand slips for encoding
the 8 diphthongs, while 8 hand shapes are used to encode the
24 consonants.

Both datasets are randomly partitioned into 10 equal sized
subsets, with 80% of the data being used for training, 10% for
validation, and 10% for testing in each subset.

B. Results

All models are evaluated in phoneme error rate (PER) (%).
As demonstrated in Table I, the proposed model yields the
lowest PERs on both datasets achieving 29.12% for French CS
(improving over the prior published results without synchro-
nization techniques obtained in [8] by 9.38% PER, absolute)
and 36.25% for British English CS. As it may be observed
there is a significant difference between the PER performance
on the two datasets. This is primarily due to the limited size
of the British English CS dataset. Notably, the 3D-CNN based
feature learner yields consistent improvement over all models
for both datasets as compared to the other alternatives provid-
ing a more explicit discrimination of the extracted features.
Finally, the attentional CNN encoder-decoder outperforms the
other sequence models, but lags our model.

C. Model Variations

Table II reports PER results of a number of model variations
regarding the feature learners, the number of TDS blocks, and
the number of adjacent frames used by the feature learner.
Specifically, we examined the performance of the proposed
model under other baseline 3D-CNNs like ResNet-10 and
ResNet-101, but we ended with worse PERs. It should be
noted that a 2D-CNN image feature learner based on the
Alexnet architecture provides lower performance by a sig-
nificant margin of almost 9%. We also reduced the number
of channels from (10, 128) to (10, 18) and (10, 14) obtaining
worse PERs by at least 3%. Moreover, we increased the
number of TDS blocks from two to three without a meaningful
improvement in performance. Additionally, the impact of using
concatenated adjacent 2D-CNN context feature vectors instead

TABLE II
COMPARATIVE EVALUATION IN PER (%) OF A NUMBER OF MODEL

VARIATIONS WITH NB BEING THE NUMBER OF TDS BLOCKS AND NF THE
NUMBER OF ADJACENT FRAMES.

Model details Cued speech datasets
Feature learner Nb Nf French British

2D-CNN 2 38.52 44.27
2D-CNN Conc. 2 3 32.49 38.96
3D ResNet-10 2 3 30.85 37.41

3D ResNet-101 2 3 31.02 38.47
3D ResNet-34 3 3 29.76 37.34
3D ResNet-34 4 3 29.91 38.23
Automatic synchronization 30.96 38.39

Handshape & lips only 39.56 44.28

329



of 3D-CNN features on the model performance was evaluated.
As it may be observed in Table II the proposed model with
a 3D-CNN image feature learner turns out superior on both
evaluation datasets.

As already mentioned, there exists asynchrony between
hand and lip articulations with the hand generally preceding
lips by approximately one syllable [4]. For that purpose, we
evaluated the model performance using an automatic align-
ment based on the delay between the two streams, namely a
12-frame [11] and 15-frame delay for French CS and British
English CS dataset, respectively. The proposed model with
direct feature fusion yields lower PER on both evaluation
sets. This is due to the better generalization ability of the
proposed sequence learning approach. Finally, in order to
demonstrate the importance of the hand position embeddings
to CS, we evaluated our model performance by removing that
third stream in our feature fusion module. That resulted in
significant PER degradation, demonstrating the importance of
the hand position in CS.

V. CONCLUSION

In this paper we propose a sequence learning model for
effective CS recognition involving two principal phases, a 3D-
CNN based feature learner followed by a fully convolutional
TDS encoder and a multi-step attention-based convolutional
decoder. We highlighted how the incorporation of the 3D
ResNet-34 feature extractor improves the feature learning
and, by extension, the fully convolutional sequence model
performance. The performance comparative evaluation on two
CS datasets demonstrated that the proposed model generalizes
much better than other sequence learning architectures.
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