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Executive Summary 

The SL-ReDu project aims to advance the state-of-the-art in the automatic recognition of Greek Sign 

Language (GSL) from videos, while focusing on the education use-case of standardized teaching of GSL 

as a second language. In this deliverable (D2.1), we present our first version of the sign language (SL) 

recognizer, focusing on two recognition problems: (a) that of isolated signs of GSL, and (b) that of 

continuous sequences of fingerspelled characters. Specifically, we build upon the visual tracking and 

feature extraction methods that we developed earlier as part of D1.1 (M06), exploiting the OpenPose 

human skeleton tracking algorithm to detect both manual and non-manual SL articulators. Based on these, 

we extract low-level SL information, namely handshapes, body postures, and mouth gestures/shapes. We 

subsequently fuse such representations to yield higher-level SL information, thus being able to recognize 

complex signs. For this purpose, we investigate five deep-learning based algorithms that we adapt to the 

problem of SL recognition. To evaluate the developed algorithms and decide on the best approach, we 

conduct experiments on a total of four databases: Three of these are suitable for the problem of 

recognizing isolated signs of GSL, while the fourth is employed for continuous fingerspelling, albeit in 

the American SL due to the lack of a corresponding dataset in GSL. This deliverable constitutes part of 

the first project milestone (MS1 – M12), and it will be updated in the future as D2.2 and D2.3, gradually 

adding complexity to the GSL recognition task and algorithms. 
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1 Introduction 

Automatic sign language (SL) recognition from video constitutes a challenging problem that has attracted 

much interest in the literature [1-31]. Indeed, SL is a non-vocal form of communication, involving 

complex articulation in the 3D visible space around the speaker, with numerous upper-body “articulators” 

carrying specific information content [32]. Clearly, central to SL is the manual articulation, i.e. the shape, 

motion pattern, and relative position of one or both hands and arms w.r.t. the signer’s body. However, 

non-manual articulators, in particular body leaning, shoulder motion, head pose, mouthing patterns, eye 

gaze, and eyebrow movement, all contribute to the formation of basic SL signs, complementing manual 

articulation [32-36]. It is thus clear that a successful SL recognition system should be able to accurately 

track both manual and non-manual articulators in space and time, recognize patterns in the respective 

articulatory streams, and fuse them at the appropriate temporal level to yield basic signs and their 

temporal sequence. Therefore, crucial components in addressing the problem are the visual detection, 

tracking, and visual feature representation of both manual and non-manual SL articulation, and 

subsequently the employment of suitable learning approaches for classification and fusion based on the 

extracted visual feature representations. Achieving such goals constitutes the focus of this WP2 

deliverable, building on our earlier work on visual tracking and feature extraction that we have reported in 

D1.1 [37] as part of the WP1 activities. 

Specifically, in D2.1 we follow the best performing approaches of D1.1, starting with the OpenPose 

framework [38-40] to detect the human skeleton in the 2D image plane and from it the regions of interest 

for the signer hands and mouth. Subsequently, we extract visual features from these, employing 2D 

convolutional neural networks (CNNs) [41-47], and we combine the resulting representations by early 

fusion. We summarize this process in Section 2. 

The main part of the deliverable concerns the first version of classification algorithms developed for SL 

recognition as part of the WP2 project activities, based on the extracted features and trained on large SL 

databases. For this purpose, we focus on deep-learning techniques, since these are known to achieve state-

of-the-art results on a number of visual spatio-temporal classification problems [41-52]. In more detail, 

we consider an attention-based encoder-decoder, motivated by recent work in automatic speech 

recognition [53-55] and machine translation [56-61], that is equipped with temporal convolutions, a 

multi-step attention mechanism, and gated linear units over the convolution output [31, 62]. Further, we 

investigate a number of alternative techniques, namely the Transformer architecture [63] based on a 

multi-head attention-based network, as well three attentional recurrent neural network (RNN) variations, 

based on the long short-term memory (LSTM) [64], the bidirectional LSTM (BLSTM) [65], and the gated 

recurrent unit (GRU) [56] architectures. We provide pertinent details in Section 3. 

The aforementioned approaches are developed here for two recognition tasks: (a) that of isolated signs of 

the Greek Sign Language (GSL), and (b) that of fingerspelling, i.e. the recognition of continuous 

sequences of alphabet letter signs. The two problems constitute a medium-vocabulary isolated task and a 

small-vocabulary continuous task, respectively, thus providing desirable variability in our SL recognition 

efforts, which will progressively become more complex as our WP2 work advances and will be reported 

in future deliverables D2.2 and D2.3. Concerning the isolated GSL recognizer, this is developed and 

evaluated on data from three appropriate GSL datasets, namely the Polytropon GSL corpus [66] the ITI 

GSL dataset of [20], and the GSL part of the Dicta-Sign database [67]. These data resources were 

identified as part of the WP3 project activities and are further described in deliverable D3.1 [68]. 

Concerning the fingerspelling task, it should be noted that this holds great importance to SLs, due to the 

fact that fingerspelling signing is commonly employed for prominent words that lack unique signs, such 

as names, technical terms, and foreign words, all of which often hold a crucial content role [32], and as 

such has attracted significant interest in the SL recognition literature [21-31]. Note though, that due to the 

lack of a corresponding dataset in GSL, we develop and evaluate fingerspelling in the American Sign 

Language (ASL), employing the ChicagoFSWild dataset [30] for this purpose. We provide the 
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corresponding algorithmic implementation details, experimental framework, and results in Sections 4 and 

5 for the two recognition tasks, respectively, and we conclude this deliverable in Section 6. 
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2 Visual Tracking and Feature Extraction 

As mentioned in the Introduction, concerning visual tracking and feature extraction, we employ the best-

performing approaches among the ones investigated in D1.1 [37]. In particular, due to its robustness, we 

exploit the OpenPose framework [38-40] to detect the human skeletal joints of the signer and a number of 

facial keypoints, from which we extract regions-of-interest (ROIs) of the signer hands and mouth. 

Subsequently, we feed these ROIs to ResNet-18 CNNs [44] to produce appearance features of the 

handshapes and mouthing patterns, since such CNN-based representations have shown superior 

performance over a number of alternative features that we investigated in D1.1. Further, in addition to the 

approach of D1.1, we also consider shape/pose features in the form of the 2D coordinates of a number of 

human skeletal joints (including hand joints) that are returned by OpenPose, motivated by [47-49]. The 

resulting feature streams are then combined by simple feature fusion and fed to the classifier architectures 

that are detailed in Section 3. An overview of the overall approach is depicted in Figure 1. Further details 

are provided in the next subsections. 

 

 

Figure 1: Overview of the visual tracking and feature extraction methodology adopted in D2.1. 

2.1 Human Skeletal Features  

To extract human skeletal data, the OpenPose human joint detector [38-40] is employed, which provides a 

descriptive structural representation of the human body (body pose, hands, and face) relying on deep 

convolutional pose models. To operate, the OpenPose network initially extracts image features employing 

the first 10 layers of VGG-19 [43], which are then fed to two parallel convolutional layer branches. The 

first branch generates a set of confidence maps, each representing a specific human pose skeleton part, 

while the second produces a set of part affinity fields [38] that represent the degree of confidence of the 

association for each pair of body part detections. OpenPose provides a detailed spatio-temporal 

representation of the human skeleton, extracting in total 137 human skeleton joint descriptors in the form 

of image coordinates (see Figure 2(a)). Specifically, OpenPose renders 25 body pose keypoints, 21 joints 

for each hand, as well as 70 facial keypoints, as also depicted in Figure 2(b). 

For our problem, since the majority of SL videos typically include only the signer upper-body (as these 

are involved in the signing process), we exploit only 57 estimated coordinates, removing 10 human body 

joints associated with the lower body of the signer, as well as the face keypoints (that do not involve 

manual articulation). To obtain translation and scale invariance, all extracted human skeletal joints are 

subjected to normalization by converting the image to a local coordinate system with the neck keypoint 

being its origin, whereas further normalization is applied based on the distance between the left and right 

shoulder keypoints. This yields 114-dimensional (dim) feature vectors, capturing the coordinates of the 

upper-body skeleton (30-dim) and the two hands (84-dim in total). 
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             (a)                                                   (b)                                                     (c)                                    

Figure 2: (a) An example of the skeleton representation obtained by the OpenPose library [40]; (b) input 

image frame from the Polytropon GSL corpus [66] with super-imposed keypoints generated by 

OpenPose; and (c) input image marked with rectangular boxes enclosing the handshapes and the mouth 

region derived based on the human skeleton. 

2.2 Handshape and Mouthing Visual Features 

The primary source of SL information is the manual articulation involving handshape deformation and 

orientation, with an additional source provided by mouth region gestures. For this purpose, we segment 

the two hands and mouth ROIs, based on the corresponding skeletal coordinates obtained by OpenPose 

(see also Figure 2(c)). This process yields three ROIs, each of which is subsequently fed to a pre-trained 

ResNet-18 convolutional network [44] (trained on the ImageNet database [69]) in order to extract feature 

maps by taking the output of the fully-connected layer of the CNN. The network uses 3 x 3 convolutional 

kernels, down-sampling with stride 2, and it is trained using the mean squared error loss function. Note 

that all ROIs are resized to the fixed size of the ResNet-18 network input layer (224 x 224 pixels). The 

network outputs 512-dim feature maps for each ROI, by considering the output of its global average 

pooling layer. 

2.3 Feature Fusion 

The resulting feature streams are fused via simple concatenation, generating a 1,650-dim feature vector 

(114-dim for the human skeleton, and 512-dim for the ROIs of each of the mouth and two hands), which 

is subsequently fed to the prediction module.  Additional systems with fewer feature streams (hence lower 

dimensionalities) are also evaluated (see Sections 4.3 and 5.3). It should be noted that in case of missing 

streams due to OpenPose failures or occluded hands, the respective features are filled by zeros. 
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3 SL Recognition Architectures 

Treating SL recognition from videos as a sequence-to-sequence prediction problem, we address it using 

sequence learning models based on encoder-decoder architectures equipped with attention [56-63]. In this 

deliverable, we investigate five such approaches, namely the attentional LSTM [64] encoder-decoder, the 

attentional BLSTM [65] encoder-decoder, the attentional GRU [56, 57] encoder-decoder, the Transformer 

encoder-decoder [63], as well as the attentional CNN encoder-decoder [31]. We provide more details in 

the next subsections. 

3.1 Attentional LSTM Encoder-Decoder 

Sequence-to-sequence prediction is mainly associated with attention-based RNN encoder-decoder 

models. A significant portion of attentional RNN such schemes has been proposed in the literature 

differing in the RNN types and in the context vector calculation. The most popular RNN encoder-decoder 

alternative is the LSTM network [28, 64]. 

In its general form, the RNN encoder-decoder module comprises two processes: encoding and decoding 

(see also Figure 3). In particular, the LSTM encoder [64] is fed with the latent representations x derived 

from the feature learner generating hidden state representations hm = LSTM (xm , hm-1). During the 

decoding process, hidden state sequence h is processed by the LSTM decoder producing the elements of 

the output sequence y, one by one. Further, the attentional models are based on the alignment between 

input and output denoted by the context vector c that expresses the likelihood of each chunk of source 

sequence being related to the current output. In attention-based architectures the context vector c is 

computed as the weighted sum of each encoder hidden state h at each time step t. Τhe alignment score is 

given by a score function normalized by softmax. To date, several alternatives have been proposed for 

this task, like the alignment functions in [31, 58, 59].  

 

Figure 3: Attention-based RNN encoder-decoder architecture based on LSTMs [64]. 

3.2 Attentional BLSTM Encoder-Decoder 

Recently, several RNN architectures based on bidirectional LSTM (BLSTM) [65] networks have been 

proposed [58, 60, 61]. Instead of predicting the current output based on the past context as in the case of 

LSTMs, in BLSTMs in addition to the previous observations there is also access to the future ones. This 

is obtained by applying two LSTMs: one processing the input sequence forward (left-to-right) and the 

other backward (right-to-left), both related to the same output (see also Figure 4). 

As described in Section 3.1, during encoding the latent variable sequence x derived from the feature 

learner is fed to an RNN encoder, generating state representations h. The only difference with the 
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attentional LSTM encoder-decoder is that, here, a BLSTM network is employed as encoder. During 

encoding the latent variable sequence x derived from the feature learner is fed to a forward LSTM 

encoder, generating state representations ℎ��m = LSTM (xm , ℎ��m-1). In addition, the input sequence is also 

processed in the opposite direction ℎ��m = LSTM (xm , ℎ��m+1). These two calculations are concatenated 

generating hidden state hm. Then, as in the attention-based LSTM encoder-decoder of Section 3.1, hidden 

states h are processed by the LSTM decoder, producing the predicted output. As mentioned previously, in 

attentional models a set of alignment scores are first computed, which are multiplied by the encoded 

representations of the hidden states, producing the context vector c.  

 

Figure 4: Attention-based RNN encoder-decoder architecture based on BLSTMs [65]. 

3.3 Attentional GRU Encoder-Decoder 

As previously described (Sections 3.1 and 3.2), given the input sequence x, the LSTM is adopted as 

encoder to estimate the corresponding sequence of hidden state h. However, LSTM training is susceptible 

to problems such as the vanishing gradient and the exploding gradient as described in [70]. Therefore, 

gated recurrent units (GRUs) [56] have been introduced as an improved version of the recurrent block to 

adaptively capture various time-scale dependencies. Similarly to LSTMs, GRU has a gating mechanism 

adjusting the information flow within the GRU, however, with fewer parameters and operations. 

Similar in spirit to the attentional LSTM / BLSTM encoder-decoder model, the attention-based GRU 

encoder-decoder comprises two processes, namely encoding and decoding (see also Figure 5). 

Specifically, the encoder maps an input sequence x to a sequence of hidden states h, while the decoder 

generates an output sequence y (one element at a time), given the hidden states h. In addition, since the 

model is equipped with an attention mechanism, the GRU decoder is fed with the previous target element 

yt−1 and the context vector c, generating the decoder hidden state, d, through which current predicted 

output yt is produced. 

 

Figure 5: Attention-based RNN encoder-decoder architecture based on GRUs [56]. 
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3.4 Transformer Encoder-Decoder 

The transformer encoder-decoder [63] is an architecture based solely on attention mechanisms to outline 

the dependencies between input and output, abstaining from recurrence and convolutions. Specifically, 

transformers employ self-attention and point-wise fully connected layers in the encoder-decoder, as 

shown in Figure 6. The latent variable sequence output by the feature learner x is fed to the model 

generating the predicted output y. Specifically, the transformer encoder maps the input sequence x to a 

state representations h, and, subsequently, the decoder returns the predicted output, one by one, given h.  

As in attention-based RNN encoder-decoders, the transformer encoder-decoder model is auto-regressive 

[71], utilizing the previously generated output element as additional input for generating the current 

output. The encoder consists of a stack of identical layers, each of which comprises two sub-layers, 

namely, a multi-head self-attention mechanism and a position-wise fully connected feed-forward network. 

Residual connections around the two sub-layers are added and followed by layer normalization. Further, 

the decoder follows the same architecture with the same number of stacked layers composing instead of 

three sub-layers, with the third one performing multi-head attention over the encoder output. Finally, 

residual connections around each of the sub-layers are added and also followed by a normalization layer.  

 

 

 Figure 6: The transformer encoder-decoder architecture (figure from [63]). 

3.5 Attentional CNN Encoder-Decoder 

Another sequence learning architecture introduced in the literature is the attention-based CNN encoder-

decoder [31], which relies on convolutional block structures on both encoder and decoder to compute    

the latent state representations (see also Figure 7). In its typical form, the l-th encoder layer reads in latent 

representation sequential data x and outputs a sequence of hidden states hl, while the l-th decoder layer 

generates dl hidden states and maps the latter to the desired output y. As in [31, 62], each layer composes 

of a 1-dim convolution followed by a gated linear unit [72], which behaves as a gating scheme that assists 

in dealing with the convolution output. 
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Considering a single-layer decoder with kernel width k, each output hidden state will be associated with k 

inputs. Thus, if we add multiple layers on top of each other, under the assumption that later layers will 

process k outputs of the previous ones, the resulting state will be related to more inputs than previously. 

To smoothly optimize and leverage the performance of deep convolutional networks, residual functions 

with reference to each convolution input and layer output are added. 

Compared to attention-based recurrent encoder-decoder architectures, a multi-layer CNN encoder-

decoder implies a multi-step attention mechanism [62]. The alignment scores a are computed through the 

alignment function in [31], conferred upon the corresponding decoder layer and each output of the last 

encoder layer. Subsequently, the context vectors c, which derive from the weighted sum of each output of 

the last encoder layer combined with the embeddings e of the input elements x in distributional space are 

in turn fed to the next decoder layer exploiting specific information during attentional vectors calculation. 

In addition, the model is complemented with an input feeding scheme [59], where previous attentional 

vectors are taken into account during current alignment score calculation. Thus, the model constitutes a 

fully-connected deep network in both directions (vertical and horizontal) that deploys substantially 

previous alignment information during the estimation of new one. 

 

Figure 7: Attention-based CNN encoder-decoder architecture [31]. 
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4 Isolated GSL Recognition 

As mentioned in the Introduction, we consider two SL recognition tasks in D2.1. In this Section, we focus 

on the first task, namely that of recognizing isolated signs of GSL. Specifically, we first discuss the 

implementation details of the recognition models of Section 3, followed by the three datasets used in their 

training and evaluation, and finally we present our experimental results. 

4.1 Model Implementation Details 

The task of isolated SL recognition is viewed as a sequence learning problem that can be addressed by an 

attention-based encoder-decoder. In its typical form, the encoder reads in latent representation sequential 

data and outputs a sequence of hidden states, while the decoder maps the latter to the desired output 

(recognized sign). The attention mechanism performs alignment between the input and output, attending 

to the most relevant information in the source sequence. As already described in Section 3, we investigate 

five models within this general encoder-decoder framework, with the following details: 

• An attentional LSTM encoder-decoder (ALSTM), where an LSTM [64] is employed as the RNN. 

Specifically, the model consists of a one-layer encoder and a one-layer decoder, both with 128 hidden 

units. Training is conducted using the Adam optimizer [73] with initial learning rate of 0.001 decayed 

by a factor of 0.3. The alignment scores are calculated using the function introduced in [58]. 

• An attentional BLSTM encoder - LSTM decoder (ABLSTM), where a BLSTM [65] is employed as 

the RNN encoder and an LSTM is used as the RNN decoder. The model comprises a one-layer 

BLSTM encoder and a one-layer LSTM decoder with 128 hidden units. Network training employs the 

Adam optimizer with an initial learning rate of 0.001 decreased by a factor of 0.3. The alignment is 

performed as in the ALSTM. 

• An attentional GRU encoder-decoder (AGRU), where GRUs [56] are employed instead of LSTMs. 

In particular, the model constitutes a 2-layer GRU [31] encoder-decoder with 128 hidden units. 

During training the Adam optimizer is used with an initial learning rate of 0.001 decreased by a factor 

of 0.3. The attention score calculation is carried out as in the previous models. 

• A transformer encoder-decoder (Transformer), which substitutes recurrent layers with multi-head 

attention ones [63]. Here, a 4-layer transformer is employed, with 8 heads for transformer self-

attention, 2048-dimension hidden transformer feed-forward, and 512 hidden units. Training is carried 

out by Adam optimization with an initial learning rate of 0.003 decreased by a factor of 0.3. 

Parameter initialization is conducted through the Xavier process [74]. 

• An attentional CNN encoder-decoder (ACNN) [31], which enables parallelization, since CNNs do 

not depend on previous-time computations. The model includes 3-layer CNNs on both encoder and 

decoder with kernel width 5 and 128 hidden units. Training is conducted via the Adam optimizer with 

an initial learning rate of 0.001 decayed by a factor of 0.1. The attention score calculation uses the dot 

alignment function [59]. 

All models are trained employing a dropout rate of 0.3 with a mini-batch size fixed to 256. To achieve a 

better matching of a target element, the beam search strategy [75] with beam width of 5 during decoding 

is applied. In addition, label smoothing [63] rate of 0.5 is employed for reducing over-confidence in 

predictions. In all cases, GPU acceleration is used for both model training and evaluation. 
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4.2 Databases 

The performance of the aforementioned algorithms is assessed on three publicly available isolated-sign 

GSL datasets that we have identified as part of WP3 activities, as reported in D3.1 [68]. These data 

resources are: (a) the Polytropon GSL corpus [66]; (b) the ITI GSL dataset [20]; and (c) the Dicta-Sign 
database [67]. The three corpora exhibit significant differences among them concerning the acted task 

and the recorded subjects, thus offering a desirable variation in the vocabulary content. Example frames 

from the three datasets are depicted in Figure 8, with more details provided next. 

 

 

Figure 8: Example frames from the three GSL isolated datasets. Shown, left-to-right, the Polytropon GSL 

corpus, the ITI GSL dataset, and the Dicta-Sign database. 

 

The Polytropon GSL corpus [66] contains 3 repetitions of 3,600 sentences performed by a single signer, 

recorded by two frontal-view cameras, a Kinect and an RGB one. Here, the RGB video data are used that 

are provided at a frame-rate of 25 Hz and 848×480-pixel resolution. Corpus annotations based on ELAN 

[76, 77] are available at both the signed sentence and signed word level. The corpus signed vocabulary 

includes 2,664 unique words corresponding to proper nouns, adverbs, and verbs characterized by 

variability in signing duration. In this study, we explore a vocabulary of 103 isolated signs that appear at 

least 30 times in the data (between 30 to 110 times, with 52.6 on average). These yield 5,414 video 

snippets, obtained by “cutting” the longer video database files based on the ELAN annotation time-

stamps of the words of interest.  

The ITI GSL dataset of [20] includes 5x3 different dialogues organized in sets of 5 individual tasks in 3 

public services, performed by 7 different signers. The dialogues, which appertain to a communication 

between a deaf person and a single service employee, are pre-defined and are performed by each signer 5 

consecutive times (5x7x5x3). Signing is captured by an Intel RealSense D435 RGB-D camera at a rate of 

30 Hz, providing simultaneously RGB and depth streams at 648×480-pixel resolution. During recording, 

camera pose adjustments are made, offering a desirable variation. Corpus annotations by GSL linguistic 

experts are provided at both the signed sentence and signed word levels. The corpus signed vocabulary 

consists of 310 unique glosses (40,785 gloss instances) and 331 unique sentences (10,290 sentences), with 

4.23 glosses per sentence on average. Here, an isolated sign recognition task is built for 305 unique words 

that appear between 4 and 10 times by each signer in the dataset, yielding 12,897 video snippets in total. 

The Dicta-Sign dataset [67] is a multilingual corpus on the domain “Travel across Europe” in four sign 

languages (including GSL), concerning communication for transport by different means and contexts as 

well as related personal experiences. The corpus comprises 10 different tasks with a session duration of 

approximately 2 hours on the same elicitation material, covering various interaction formats from 

monologues to sequences of very short turns, also with different levels of predictability. The data are 
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recorded by seven cameras, two of them stereo ones, capturing signing from different view-points (front, 

side, footage, and bird’s eye view). The GSL part of Dicta-Sign contains data expressed by 8 pairs of 

different signers (16 signers in total) consisting of 8 to 10 hours of signing. Corpus annotations are based 

on iLex export format [78] as well as ELAN [76, 77], and they are provided at two different levels 

(signed sentence and signed word) containing labels and time-stamps. The corpus signed vocabulary 

consists of 1,704 unique words. Here, we employ an isolated small-vocabulary subset of 152 unique 

words with a sufficient number of occurrences among the 7 signers between 4 and 20 times. These yield 

5,959 video snippets of words obtained by “cutting” the longer video database files based on the ELAN 

annotation time-stamps of the words of interest.  

Since the GSL multi-signer datasets (i.e., excluding the single-signer Polytropon dataset) contain more 

than 4 recordings for each sign and every signer, experiments are performed in a multi-signer framework 

in an effort to retain a balance between the sets. In addition, all experiments on the three corpora are 

conducted using ten-fold cross-validation, where 80% of each fold is allocated to training, 10% to 

validation, and 10% to testing. 

4.3 Experimental Results 

For the task of isolated GSL recognition we evaluate the performance of the sequence learning models 

described in Section 3 on all three datasets, i.e. the Polytropon GSL (PGSL) corpus, the ITI GSL dataset, 

and the Dicta-Sign dataset. All our results are reported in word (gloss) accuracy (%). 

In our first experiment, reported in Figure 9, we employ the feature representations of Section 2 

individually, namely handshape features only (1024-dim), mouth region ones only (512-dim), and human 

skeletal features alone (114-dim). From the figure, it can be observed that the handshape feature stream 

yields the best results on all datasets. Further, the human skeleton seems to constitute a more powerful 

representation than the mouth region features, while using just the latter yields the lowest accuracy. 

 

Figure 9: Word accuracy (%) of the evaluated encoder-decoder models on the three isolated GSL 

datasets employing individual feature streams (handshapes, mouth region, or human skeleton). 
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It can also be observed that the attention-based CNN encoder-decoder (ACNN) turns out superior to the 

considered alternatives in terms of word accuracy (PGSL: 88.17%, ITI GSL: 88.11%, Dicta-Sign: 86.55% 

(handshape feature stream)), revealing the power of exploiting convolutional block structures on the 

encoder-decoder, while the worst results for all GSL datasets are obtained by the Transformer encoder-

decoder module. It should be noted that the attentional BLSTM (ABLSTM) encoder-decoder proves to be 

a powerful learning model, obtaining word accuracy results close to the ones achieved by the ACNN 

encoder-decoder. In particular, the ABLSTM model evaluated using the handshape feature stream yields 

87.68% word accuracy on PGSL, 87.92% on ITI GSL, and 86.41% on Dicta-Sign. 

In a second experiment, reported in Figure 10, we compare the performance of our models on all datasets 

investigating various combinations of the feature streams of Section 2 by feature fusion (concatenation). 

Our evaluation reveals that the combination of all feature streams, namely the handshapes, mouth, and 

human skeleton, yields the best word accuracy results compared to other feature combinations, while the 

combination of just handshapes and mouth region features performs the worst. It can also be observed 

that the attentional CNN encoder-decoder (ACNN) yields the best results on all three datasets, namely 

92.25% word accuracy on PGSL, 92.77% on ITI GSL, and 90.23% on Dicta-Sign, when all feature 

streams are fused. 

 

Figure 10: Word accuracy (%) of the evaluated encoder-decoder models on the three isolated GSL 

datasets, when concatenating various feature streams of Section 2 (handshapes + mouth; handshapes + 

human skeleton; all three feature streams). 
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5 Continuous Fingerspelling Recognition in ASL 

The second SL recognition task considered in D2.1 is that of continuous fingerspelling. This involves a 

small vocabulary of signs (alphabet letters), however its continuous nature (i.e., the unconstrained letter 

length of fingerspelled words) presents orthogonal challenges to the task of isolated recognition of 

Section 4. As mentioned in the Introduction, we consider this task for the American sign language (ASL), 

due to the fact that corresponding data in GSL will only be available in later stages of SL-ReDu, as part of 

its WP3 activities. In the task presentation, we follow a similar structure to that of Section 4. 

5.1 Model Implementation Details 

The fingerspelling recognition task can be treated as a sequence-to-sequence prediction problem 

addressed by the attentional encoder-decoder general approach of Section 3. According to this 

methodology, a source word (sequence of letters) is observed via a sequence of raw image frames that is 

processed to produce a sequence of features, as discussed in Section 2. These are then passed through an 

attention-based encoder-decoder module, producing a sequence of letters as output. Like most sequence-

to-sequence prediction problems, there is no one-to-one alignment between the input and output 

sequences, as several frames (and their corresponding feature vectors) can be associated with each letter. 

More specifically, we consider for the fingerspelling task the five attention-based sequence models of 

Section 3, which we implement as follows: 

• Our attentional LSTM encoder-decoder (ALSTM) comprises a one-layer LSTM encoder and a one-

layer LSTM decoder, both with hidden dimensionality equal to 128. Training is carried out via the 

Adam optimizer [73] with initial learning rate of 0.001 decreased by a factor of 0.3. The alignment 

scores are computed using the function proposed in [58]. 

• Our attentional BLSTM encoder - LSTM decoder (ABLSTM) includes a one-layer BLSTM for 

encoding and a one-layer LSTM decoder with 128 hidden units. For its training, the network employs 

the Adam optimizer with an initial learning rate of 0.001 decreased by a factor of 0.3. The alignment 

is obtained via the function in [58]. 

• Our attentional GRU encoder-decoder (AGRU) contains a single GRU layer at each model side with 

256 hidden units. Its training is conducted via Adam with an initial learning rate of 0.001 decreased 

by a factor of 0.3, while its attention scores are calculated as in the preceding models. 

• Our transformer encoder-decoder (Transformer) constitutes a 4-layer model with 8 heads for 

transformer self-attention, 2048-dimension hidden transformer feed-forward, and 512 hidden units. 

For its training we employ Adam with 0.001 initial learning rate decayed by a factor of 0.5, while for 

parameter initialization we conduct the Xavier process [74]. 

• Our attentional CNN encoder-decoder (ACNN) is a 3-layer CNN model with kernel width 5 and 256 

hidden units. Its training is carried out via the Adam optimizer with an initial learning rate of 0.003 

decreased by a factor of 0.1, and its attention score is calculated based on the dot alignment function 

[59]. In addition, the model is complemented with an input feeding scheme. 

All models are trained employing a dropout rate of 0.3 with a mini-batch size fixed to 256. To achieve a 

better matching of a target element, the beam search strategy [75] with beam width of 5 during decoding 

is applied. In addition, a label smoothing [63] rate of 0.5 is employed for reducing over-confidence in 

predictions. In all cases, GPU acceleration is used for training and evaluation. 
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5.2 Database 

The performance of the aforementioned algorithms is assessed on the publicly available ChicagoFSWild 

dataset [30]. This corpus includes clips of ASL fingerspelling sequences collected from online videos at 

640×360-pixel frame resolution, providing data in real-world settings. The database was annotated using 

ELAN [76, 77] by students that have studied ASL. The corpus consists of 7,304 ASL fingerspelling 

sequences expressed by 160 signers, with 640×360-pixel resolution, leading to a 3,553 unique word 

vocabulary. Here, we employ a small-vocabulary subset concerning 103 unique fingerspelled words, 

involving 26 English letters with a sufficient number of occurrences in the data, between 10 and 130 

times in the corpus. These yield 3,076 video snippets of words (from 143 signers), obtained by the ELAN 

annotation time-stamps of the words of interest. Training is conducted under a multi-signer setting, 

through ten-fold cross-validation with 80% of each fold used for training, 10% for validation, and 10% 

for testing. Example frames from the database are depicted in Figure 11. 

 
 

Figure 11: Example frames of the ChicagoFSWild dataset, used here for continuous ASL fingerspelling. 

5.3 Experimental Results 

In Table 1 we report the performance of the various sequence-learning techniques of Section 3 for ASL 

fingerspelling recognition on the ChicagoFS-Wild database (in word accuracy (%), in all cases), when 

employing the individual feature representation streams of Section 2 (handshapes, mouth, and skeletal 

keypoints) alone, as well as some of their combinations. 

Handshape 
(1024-dim) 

Mouth 
(512-dim) 

Body & hand 
points (144-dim) 

ALSTM ABLSTM AGRU Transformer ACNN 

X   84.12 84.58 81.06 83.44 84.71 

 X  23.31 23.44 22.89 22.36 23.57 

  X 79.64 80.04 79.73 78.92 80.19 

X X  85.27 86.37 83.27 83.82 86.54 

X  X 86.03 89.25 84.15 85.12 90.81 

X X X 86.11 90.54 84.34 85.20 91.01 

Table 1: ASL fingerspelling results (in word accuracy (%)) on the ChicagoFS-Wild database using the 

feature streams of Section 2, individually or in combinations, in conjunction with the attention-based 

encoder-decoder models of Section 3. 
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As can be seen in the table, among the single feature streams (upper 3 lines of the table results), the 

handshape features perform the best, achieving the highest accuracies on all evaluated encoder-decoder 

models, with the skeletal keypoint representation being slightly worse and the mouth appearance features 

performing quite poorly. Nevertheless, the combination of handshape features with mouth appearance 

ones, as well as with skeletal keypoints of the body and hands, improves performance, demonstrating that 

all three representations carry useful SL information, complementary to each other. Further, the 

concatenation of all feature streams yields the best results for all five recognition models. 

In addition, and similarly to the isolated GSL task (Section 4.3), it can be observed that the best results are 

obtained by the attentional CNN encoder-decoder, revealing its superiority to the considered modeling 

alternatives. Notably, the attentional BLSTM encoder - LSTM decoder performs quite close to it, and 

significantly better than both other RNN alternatives (ALSTM and AGRU) and the Transformer. 

Finally, Table 2 reports the number of model parameters in millions for all five models considered. It can 

be observed that the best-performing model (ACNN) has significantly more parameters than the RNN-

based encoder-decoder approaches (ALSTM, ABLSTM, and AGRU), but is much leaner than the 

transformer model. Taking also into consideration the recognition results of Table 1, it seems that the best 

modeling choices are provided by the ACNN and ABLSTM models. 

 
Model ALSTM ABLSTM AGRU Transformer ACNN 

# Parameters (M) 0.554 0.619 0.734 7.321 3.007 

Table 2: Number of model parameters (in million) for all encoder-decoder models of Section 3. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



D2.1 First Version of GSL Recognizer 

Page 20 

6 Conclusions 

In this deliverable, we presented the SL-ReDu project initial approach on the classifier design for SL 

recognition, as part of the WP2 project activities. The work follows our WP1 activities concerning visual 

tracking and feature extraction that was reported in D1.1 and appropriately extended here, as well as our 

WP3 activities on data resource harvesting, as reported in D3.1. Based on these, we developed a number 

of attention-based encoder-decoder architectures operating on visual features and evaluated them on four 

databases, so as to decide on the best modeling approach. Specifically, we considered two recognition 

tasks, that of isolated signs of GSL and a second one concerning continuous sequences of fingerspelled 

characters of ASL, thus exploring tasks with different characteristics and challenges. Based on our 

evaluation, we determined that the attentional CNN encoder-decoder architecture is the most appropriate, 

providing the best performance on all four datasets considered for both recognition tasks. The deliverable 

will be extended in our upcoming WP2 activities in the form of D2.2 and D2.3, addressing more complex 

GSL recognition problems. 
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